summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorWillem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl>2019-09-27 15:16:26 +0200
committerWillem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl>2019-09-27 15:16:26 +0200
commit54af7e8e22a3f1c9d90b13291b28d39778c05564 (patch)
tree260310b16d624261bb80f82979af27750022259b
parent1fec36f7ccadd5f7dcf2bb59b0654dc53653b0f3 (diff)
parentb629db207bb263495bfff2e61ce189ccac27b4b9 (diff)
downloadastra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.gz
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.bz2
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.xz
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.zip
Merge branch 'consistent_scaling'
-rw-r--r--build/linux/Makefile.in2
-rw-r--r--build/linux/acinclude.m417
-rw-r--r--build/linux/configure.ac8
-rw-r--r--cuda/2d/algo.cu19
-rw-r--r--cuda/2d/astra.cu3
-rw-r--r--cuda/2d/cgls.cu65
-rw-r--r--cuda/2d/em.cu65
-rw-r--r--cuda/2d/fan_bp.cu329
-rw-r--r--cuda/2d/fan_fp.cu85
-rw-r--r--cuda/2d/fbp.cu20
-rw-r--r--cuda/2d/fft.cu207
-rw-r--r--cuda/2d/par_bp.cu77
-rw-r--r--cuda/2d/par_fp.cu76
-rw-r--r--cuda/2d/sart.cu5
-rw-r--r--cuda/2d/sirt.cu63
-rw-r--r--cuda/3d/cgls3d.cu162
-rw-r--r--cuda/3d/cone_bp.cu340
-rw-r--r--cuda/3d/cone_fp.cu108
-rw-r--r--cuda/3d/fdk.cu242
-rw-r--r--cuda/3d/mem3d.cu4
-rw-r--r--cuda/3d/par3d_bp.cu254
-rw-r--r--cuda/3d/par3d_fp.cu168
-rw-r--r--cuda/3d/sirt3d.cu161
-rw-r--r--include/astra/CudaProjector3D.h2
-rw-r--r--include/astra/FanFlatBeamLineKernelProjector2D.inl6
-rw-r--r--include/astra/FanFlatBeamStripKernelProjector2D.inl12
-rw-r--r--include/astra/Features.h16
-rw-r--r--include/astra/ParallelBeamDistanceDrivenProjector2D.inl9
-rw-r--r--include/astra/ParallelBeamLineKernelProjector2D.inl31
-rw-r--r--include/astra/ParallelBeamLinearKernelProjector2D.inl19
-rw-r--r--include/astra/ParallelBeamStripKernelProjector2D.inl33
-rw-r--r--include/astra/cuda/2d/algo.h9
-rw-r--r--include/astra/cuda/2d/cgls.h2
-rw-r--r--include/astra/cuda/2d/fbp.h6
-rw-r--r--include/astra/cuda/3d/fdk.h2
-rw-r--r--include/astra/cuda/3d/mem3d.h2
-rw-r--r--include/astra/cuda/3d/util3d.h47
-rw-r--r--src/CompositeGeometryManager.cpp4
-rw-r--r--src/CudaFilteredBackProjectionAlgorithm.cpp7
-rw-r--r--src/CudaProjector3D.cpp8
-rw-r--r--src/CudaReconstructionAlgorithm2D.cpp5
-rw-r--r--src/Features.cpp6
-rw-r--r--src/FilteredBackProjectionAlgorithm.cpp13
-rw-r--r--src/GeometryUtil2D.cpp9
-rw-r--r--tests/python/test_line2d.py180
-rw-r--r--tests/python/test_rec_scaling.py213
-rw-r--r--tests/test_ParallelBeamLineKernelProjector2D.cpp82
-rw-r--r--tests/test_ParallelBeamLinearKernelProjector2D.cpp170
48 files changed, 841 insertions, 2532 deletions
diff --git a/build/linux/Makefile.in b/build/linux/Makefile.in
index 209206e..f478bb7 100644
--- a/build/linux/Makefile.in
+++ b/build/linux/Makefile.in
@@ -257,8 +257,6 @@ endif
TEST_OBJECTS=\
tests/main.o \
tests/test_AstraObjectManager.o \
- tests/test_ParallelBeamLineKernelProjector2D.o \
- tests/test_ParallelBeamLinearKernelProjector2D.o \
tests/test_Float32Data2D.o \
tests/test_VolumeGeometry2D.o \
tests/test_ParallelProjectionGeometry2D.o \
diff --git a/build/linux/acinclude.m4 b/build/linux/acinclude.m4
index 92f263a..4d278c7 100644
--- a/build/linux/acinclude.m4
+++ b/build/linux/acinclude.m4
@@ -166,3 +166,20 @@ fi
rm -f conftest.cu conftest.o conftest.nvcc.out
])
+dnl ASTRA_CHECK_CUDA_BOOST(action-if-ok, action-if-not-ok)
+dnl Check for a specific incompatibility between boost and cuda version
+dnl (See https://github.com/boostorg/config/pull/175 )
+AC_DEFUN([ASTRA_CHECK_CUDA_BOOST],[
+cat >conftest.cu <<_ACEOF
+#include <boost/shared_ptr.hpp>
+int main() {
+ return 0;
+}
+_ACEOF
+ASTRA_RUN_LOGOUTPUT([$NVCC -c -o conftest.o conftest.cu $NVCCFLAGS])
+AS_IF([test $? = 0],[$1],[
+ AS_ECHO(["$as_me: failed program was:"]) >&AS_MESSAGE_LOG_FD
+ sed 's/^/| /' conftest.cu >&AS_MESSAGE_LOG_FD
+ $2])
+])
+
diff --git a/build/linux/configure.ac b/build/linux/configure.ac
index 0a9024e..bb4d113 100644
--- a/build/linux/configure.ac
+++ b/build/linux/configure.ac
@@ -122,6 +122,14 @@ if test x"$HAVECUDA" = xyes; then
AC_MSG_RESULT($HAVECUDA)
fi
+if test x"$HAVECUDA" = xyes; then
+ AC_MSG_CHECKING([if boost and CUDA versions are compatible])
+ ASTRA_CHECK_CUDA_BOOST(AC_MSG_RESULT([yes]),[
+ AC_MSG_RESULT([no])
+ AC_MSG_ERROR([Boost and CUDA versions are incompatible. You probably have to upgrade boost.])
+ ])
+fi
+
AC_ARG_WITH(cuda_compute, [[ --with-cuda-compute=archs comma separated list of CUDA compute models (optional)]],,)
if test x"$HAVECUDA" = xyes; then
AC_MSG_CHECKING([for nvcc archs])
diff --git a/cuda/2d/algo.cu b/cuda/2d/algo.cu
index b4c2864..be15b25 100644
--- a/cuda/2d/algo.cu
+++ b/cuda/2d/algo.cu
@@ -134,8 +134,8 @@ bool ReconAlgo::setGeometry(const astra::CVolumeGeometry2D* pVolGeom,
delete[] fanProjs;
fanProjs = 0;
- fOutputScale = 1.0f;
- ok = convertAstraGeometry(pVolGeom, pProjGeom, parProjs, fanProjs, fOutputScale);
+ fProjectorScale = 1.0f;
+ ok = convertAstraGeometry(pVolGeom, pProjGeom, parProjs, fanProjs, fProjectorScale);
if (!ok)
return false;
@@ -242,7 +242,7 @@ bool ReconAlgo::allocateBuffers()
return true;
}
-bool ReconAlgo::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch, float fSinogramScale,
+bool ReconAlgo::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch,
const float* pfReconstruction, unsigned int iReconstructionPitch,
const float* pfVolMask, unsigned int iVolMaskPitch,
const float* pfSinoMask, unsigned int iSinoMaskPitch)
@@ -258,11 +258,6 @@ bool ReconAlgo::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPit
if (!ok)
return false;
- // rescale sinogram to adjust for pixel size
- processSino<opMul>(D_sinoData, fSinogramScale,
- //1.0f/(fPixelSize*fPixelSize),
- sinoPitch, dims);
-
ok = copyVolumeToDevice(pfReconstruction, iReconstructionPitch,
dims,
D_volumeData, volumePitch);
@@ -316,11 +311,11 @@ bool ReconAlgo::callFP(float* D_volumeData, unsigned int volumePitch,
if (parProjs) {
assert(!fanProjs);
return FP(D_volumeData, volumePitch, D_projData, projPitch,
- dims, parProjs, fOutputScale * outputScale);
+ dims, parProjs, fProjectorScale * outputScale);
} else {
assert(fanProjs);
return FanFP(D_volumeData, volumePitch, D_projData, projPitch,
- dims, fanProjs, fOutputScale * outputScale);
+ dims, fanProjs, fProjectorScale * outputScale);
}
}
@@ -331,11 +326,11 @@ bool ReconAlgo::callBP(float* D_volumeData, unsigned int volumePitch,
if (parProjs) {
assert(!fanProjs);
return BP(D_volumeData, volumePitch, D_projData, projPitch,
- dims, parProjs, outputScale);
+ dims, parProjs, fProjectorScale * outputScale);
} else {
assert(fanProjs);
return FanBP(D_volumeData, volumePitch, D_projData, projPitch,
- dims, fanProjs, outputScale);
+ dims, fanProjs, fProjectorScale * outputScale);
}
}
diff --git a/cuda/2d/astra.cu b/cuda/2d/astra.cu
index ec03517..7ff1c95 100644
--- a/cuda/2d/astra.cu
+++ b/cuda/2d/astra.cu
@@ -302,7 +302,8 @@ static bool convertAstraGeometry_internal(const CVolumeGeometry2D* pVolGeom,
pProjs[i].scale(factor);
}
// CHECKME: Check factor
- fOutputScale *= pVolGeom->getPixelLengthX() * pVolGeom->getPixelLengthY();
+ // NB: Only valid for square pixels
+ fOutputScale *= pVolGeom->getPixelLengthX();
return true;
}
diff --git a/cuda/2d/cgls.cu b/cuda/2d/cgls.cu
index b6a9fae..e7238b9 100644
--- a/cuda/2d/cgls.cu
+++ b/cuda/2d/cgls.cu
@@ -29,10 +29,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
@@ -102,14 +98,14 @@ bool CGLS::setBuffers(float* _D_volumeData, unsigned int _volumePitch,
return true;
}
-bool CGLS::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch, float fSinogramScale,
+bool CGLS::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch,
const float* pfReconstruction, unsigned int iReconstructionPitch,
const float* pfVolMask, unsigned int iVolMaskPitch,
const float* pfSinoMask, unsigned int iSinoMaskPitch)
{
sliceInitialized = false;
- return ReconAlgo::copyDataToGPU(pfSinogram, iSinogramPitch, fSinogramScale, pfReconstruction, iReconstructionPitch, pfVolMask, iVolMaskPitch, pfSinoMask, iSinoMaskPitch);
+ return ReconAlgo::copyDataToGPU(pfSinogram, iSinogramPitch, pfReconstruction, iReconstructionPitch, pfVolMask, iVolMaskPitch, pfSinoMask, iSinoMaskPitch);
}
bool CGLS::iterate(unsigned int iterations)
@@ -206,60 +202,3 @@ float CGLS::computeDiffNorm()
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_sinoData;
-
- SDimensions dims;
- dims.iVolWidth = 1024;
- dims.iVolHeight = 1024;
- dims.iProjAngles = 512;
- dims.iProjDets = 1536;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, sinoPitch;
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
- zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
- printf("pitch: %u\n", sinoPitch);
-
- unsigned int y, x;
- float* sino = loadImage("sino.png", y, x);
-
- float* img = new float[dims.iVolWidth*dims.iVolHeight];
-
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- CGLS cgls;
-
- cgls.setGeometry(dims, angle);
- cgls.init();
-
- cgls.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
-
- cgls.iterate(25);
-
- delete[] angle;
-
- copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
-
- saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
-
- return 0;
-}
-#endif
diff --git a/cuda/2d/em.cu b/cuda/2d/em.cu
index aa272d8..df140ec 100644
--- a/cuda/2d/em.cu
+++ b/cuda/2d/em.cu
@@ -29,10 +29,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
@@ -168,64 +164,3 @@ float EM::computeDiffNorm()
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_sinoData;
-
- SDimensions dims;
- dims.iVolWidth = 1024;
- dims.iVolHeight = 1024;
- dims.iProjAngles = 512;
- dims.iProjDets = 1536;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, sinoPitch;
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
- zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
- printf("pitch: %u\n", sinoPitch);
-
- unsigned int y, x;
- float* sino = loadImage("sino.png", y, x);
-
- float* img = new float[dims.iVolWidth*dims.iVolHeight];
-
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- EM em;
-
- em.setGeometry(dims, angle);
- em.init();
-
- // TODO: Initialize D_volumeData with an unfiltered backprojection
-
- em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
-
- em.iterate(25);
-
-
- delete[] angle;
-
- copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
-
- saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
-
- return 0;
-}
-
-#endif
diff --git a/cuda/2d/fan_bp.cu b/cuda/2d/fan_bp.cu
index dac3ac2..76d2fb9 100644
--- a/cuda/2d/fan_bp.cu
+++ b/cuda/2d/fan_bp.cu
@@ -28,10 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -50,12 +46,16 @@ const unsigned int g_blockSlices = 16;
const unsigned int g_MaxAngles = 2560;
-__constant__ float gC_SrcX[g_MaxAngles];
-__constant__ float gC_SrcY[g_MaxAngles];
-__constant__ float gC_DetSX[g_MaxAngles];
-__constant__ float gC_DetSY[g_MaxAngles];
-__constant__ float gC_DetUX[g_MaxAngles];
-__constant__ float gC_DetUY[g_MaxAngles];
+struct DevFanParams {
+ float fNumC;
+ float fNumX;
+ float fNumY;
+ float fDenC;
+ float fDenX;
+ float fDenY;
+};
+
+__constant__ DevFanParams gC_C[g_MaxAngles];
static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height, cudaTextureAddressMode mode = cudaAddressModeBorder)
@@ -74,6 +74,7 @@ static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int wi
return true;
}
+template<bool FBPWEIGHT>
__global__ void devFanBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale)
{
const int relX = threadIdx.x;
@@ -96,25 +97,25 @@ __global__ void devFanBP(float* D_volData, unsigned int volPitch, unsigned int s
float fVal = 0.0f;
float fA = startAngle + 0.5f;
- // TODO: Distance correction?
-
for (int angle = startAngle; angle < endAngle; ++angle)
{
- const float fSrcX = gC_SrcX[angle];
- const float fSrcY = gC_SrcY[angle];
- const float fDetSX = gC_DetSX[angle];
- const float fDetSY = gC_DetSY[angle];
- const float fDetUX = gC_DetUX[angle];
- const float fDetUY = gC_DetUY[angle];
-
- const float fXD = fSrcX - fX;
- const float fYD = fSrcY - fY;
-
- const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
- const float fDen = fDetUX * fYD - fDetUY * fXD;
-
- const float fT = fNum / fDen;
- fVal += tex2D(gT_FanProjTexture, fT, fA);
+ const float fNumC = gC_C[angle].fNumC;
+ const float fNumX = gC_C[angle].fNumX;
+ const float fNumY = gC_C[angle].fNumY;
+ const float fDenX = gC_C[angle].fDenX;
+ const float fDenY = gC_C[angle].fDenY;
+
+ const float fNum = fNumC + fNumX * fX + fNumY * fY;
+ const float fDen = (FBPWEIGHT ? 1.0 : gC_C[angle].fDenC) + fDenX * fX + fDenY * fY;
+
+ // Scale factor is the approximate number of rays traversing this pixel,
+ // given by the inverse size of a detector pixel scaled by the magnification
+ // factor of this pixel.
+ // Magnification factor is || u (d-s) || / || u (x-s) ||
+
+ const float fr = __fdividef(1.0f, fDen);
+ const float fT = fNum * fr;
+ fVal += tex2D(gT_FanProjTexture, fT, fA) * (FBPWEIGHT ? fr * fr : fr);
fA += 1.0f;
}
@@ -148,30 +149,27 @@ __global__ void devFanBP_SS(float* D_volData, unsigned int volPitch, unsigned in
float fVal = 0.0f;
float fA = startAngle + 0.5f;
- // TODO: Distance correction?
-
for (int angle = startAngle; angle < endAngle; ++angle)
{
- const float fSrcX = gC_SrcX[angle];
- const float fSrcY = gC_SrcY[angle];
- const float fDetSX = gC_DetSX[angle];
- const float fDetSY = gC_DetSY[angle];
- const float fDetUX = gC_DetUX[angle];
- const float fDetUY = gC_DetUY[angle];
+ const float fNumC = gC_C[angle].fNumC;
+ const float fNumX = gC_C[angle].fNumX;
+ const float fNumY = gC_C[angle].fNumY;
+ const float fDenC = gC_C[angle].fDenC;
+ const float fDenX = gC_C[angle].fDenX;
+ const float fDenY = gC_C[angle].fDenY;
// TODO: Optimize these loops...
float fX = fXb;
for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) {
float fY = fYb;
for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
- const float fXD = fSrcX - fX;
- const float fYD = fSrcY - fY;
-
- const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
- const float fDen = fDetUX * fYD - fDetUY * fXD;
-
- const float fT = fNum / fDen;
- fVal += tex2D(gT_FanProjTexture, fT, fA);
+
+ const float fNum = fNumC + fNumX * fX + fNumY * fY;
+ const float fDen = fDenC + fDenX * fX + fDenY * fY;
+ const float fr = __fdividef(1.0f, fDen);
+
+ const float fT = fNum * fr;
+ fVal += tex2D(gT_FanProjTexture, fT, fA) * fr;
fY -= fSubStep;
}
fX += fSubStep;
@@ -202,77 +200,97 @@ __global__ void devFanBP_SART(float* D_volData, unsigned int volPitch, const SDi
float* volData = (float*)D_volData;
- // TODO: Distance correction?
-
- // TODO: Constant memory vs parameters.
- const float fSrcX = gC_SrcX[0];
- const float fSrcY = gC_SrcY[0];
- const float fDetSX = gC_DetSX[0];
- const float fDetSY = gC_DetSY[0];
- const float fDetUX = gC_DetUX[0];
- const float fDetUY = gC_DetUY[0];
+ const float fNumC = gC_C[0].fNumC;
+ const float fNumX = gC_C[0].fNumX;
+ const float fNumY = gC_C[0].fNumY;
+ const float fDenC = gC_C[0].fDenC;
+ const float fDenX = gC_C[0].fDenX;
+ const float fDenY = gC_C[0].fDenY;
- const float fXD = fSrcX - fX;
- const float fYD = fSrcY - fY;
+ const float fNum = fNumC + fNumX * fX + fNumY * fY;
+ const float fDen = fDenC + fDenX * fX + fDenY * fY;
- const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
- const float fDen = fDetUX * fYD - fDetUY * fXD;
-
- const float fT = fNum / fDen;
+ const float fr = __fdividef(1.0f, fDen);
+ const float fT = fNum * fr;
+ // NB: The scale constant in devBP is cancelled out by the SART weighting
const float fVal = tex2D(gT_FanProjTexture, fT, 0.5f);
volData[Y*volPitch+X] += fVal * fOutputScale;
}
-// Weighted BP for use in fan beam FBP
-// Each pixel/ray is weighted by 1/L^2 where L is the distance to the source.
-__global__ void devFanBP_FBPWeighted(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale)
+struct Vec2 {
+ double x;
+ double y;
+ Vec2(double x_, double y_) : x(x_), y(y_) { }
+ Vec2 operator+(const Vec2 &b) const {
+ return Vec2(x + b.x, y + b.y);
+ }
+ Vec2 operator-(const Vec2 &b) const {
+ return Vec2(x - b.x, y - b.y);
+ }
+ Vec2 operator-() const {
+ return Vec2(-x, -y);
+ }
+ double norm() const {
+ return sqrt(x*x + y*y);
+ }
+};
+
+double det2(const Vec2 &a, const Vec2 &b) {
+ return a.x * b.y - a.y * b.x;
+}
+
+
+bool transferConstants(const SFanProjection* angles, unsigned int iProjAngles, bool FBP)
{
- const int relX = threadIdx.x;
- const int relY = threadIdx.y;
+ DevFanParams *p = new DevFanParams[iProjAngles];
- int endAngle = startAngle + g_anglesPerBlock;
- if (endAngle > dims.iProjAngles)
- endAngle = dims.iProjAngles;
- const int X = blockIdx.x * g_blockSlices + relX;
- const int Y = blockIdx.y * g_blockSliceSize + relY;
+ // We need three values in the kernel:
+ // projected coordinates of pixels on the detector:
+ // || x (s-d) || + ||s d|| / || u (s-x) ||
- if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
- return;
+ // ray density weighting factor for the adjoint
+ // || u (s-d) || / ( |u| * || u (s-x) || )
- const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f );
- const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f );
+ // fan-beam FBP weighting factor
+ // ( || u s || / || u (s-x) || ) ^ 2
- float* volData = (float*)D_volData;
- float fVal = 0.0f;
- float fA = startAngle + 0.5f;
- // TODO: Distance correction?
+ for (unsigned int i = 0; i < iProjAngles; ++i) {
+ Vec2 u(angles[i].fDetUX, angles[i].fDetUY);
+ Vec2 s(angles[i].fSrcX, angles[i].fSrcY);
+ Vec2 d(angles[i].fDetSX, angles[i].fDetSY);
- for (int angle = startAngle; angle < endAngle; ++angle)
- {
- const float fSrcX = gC_SrcX[angle];
- const float fSrcY = gC_SrcY[angle];
- const float fDetSX = gC_DetSX[angle];
- const float fDetSY = gC_DetSY[angle];
- const float fDetUX = gC_DetUX[angle];
- const float fDetUY = gC_DetUY[angle];
-
- const float fXD = fSrcX - fX;
- const float fYD = fSrcY - fY;
-
- const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
- const float fDen = fDetUX * fYD - fDetUY * fXD;
-
- const float fWeight = fXD*fXD + fYD*fYD;
-
- const float fT = fNum / fDen;
- fVal += tex2D(gT_FanProjTexture, fT, fA) / fWeight;
- fA += 1.0f;
+
+
+ double fScale;
+ if (!FBP) {
+ // goal: 1/fDen = || u (s-d) || / ( |u| * || u (s-x) || )
+ // fDen = ( |u| * || u (s-x) || ) / || u (s-d) ||
+ // i.e. scale = |u| / || u (s-d) ||
+
+ fScale = u.norm() / det2(u, s-d);
+ } else {
+ // goal: 1/fDen = || u s || / || u (s-x) ||
+ // fDen = || u (s-x) || / || u s ||
+ // i.e., scale = 1 / || u s ||
+
+ fScale = 1.0 / det2(u, s);
+ }
+
+ p[i].fNumC = fScale * det2(s,d);
+ p[i].fNumX = fScale * (s-d).y;
+ p[i].fNumY = -fScale * (s-d).x;
+ p[i].fDenC = fScale * det2(u, s); // == 1.0 for FBP
+ p[i].fDenX = fScale * u.y;
+ p[i].fDenY = -fScale * u.x;
}
- volData[Y*volPitch+X] += fVal * fOutputScale;
+ // TODO: Check for errors
+ cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevFanParams), 0, cudaMemcpyHostToDevice);
+
+ return true;
}
@@ -285,21 +303,9 @@ bool FanBP_internal(float* D_volumeData, unsigned int volumePitch,
bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
- // transfer angles to constant memory
- float* tmp = new float[dims.iProjAngles];
-
-#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
-
- TRANSFER_TO_CONSTANT(SrcX);
- TRANSFER_TO_CONSTANT(SrcY);
- TRANSFER_TO_CONSTANT(DetSX);
- TRANSFER_TO_CONSTANT(DetSY);
- TRANSFER_TO_CONSTANT(DetUX);
- TRANSFER_TO_CONSTANT(DetUY);
-
-#undef TRANSFER_TO_CONSTANT
-
- delete[] tmp;
+ bool ok = transferConstants(angles, dims.iProjAngles, false);
+ if (!ok)
+ return false;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
@@ -312,7 +318,7 @@ bool FanBP_internal(float* D_volumeData, unsigned int volumePitch,
if (dims.iRaysPerPixelDim > 1)
devFanBP_SS<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale);
else
- devFanBP<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale);
+ devFanBP<false><<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale);
}
cudaThreadSynchronize();
@@ -332,21 +338,9 @@ bool FanBP_FBPWeighted_internal(float* D_volumeData, unsigned int volumePitch,
bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
- // transfer angles to constant memory
- float* tmp = new float[dims.iProjAngles];
-
-#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
-
- TRANSFER_TO_CONSTANT(SrcX);
- TRANSFER_TO_CONSTANT(SrcY);
- TRANSFER_TO_CONSTANT(DetSX);
- TRANSFER_TO_CONSTANT(DetSY);
- TRANSFER_TO_CONSTANT(DetUX);
- TRANSFER_TO_CONSTANT(DetUY);
-
-#undef TRANSFER_TO_CONSTANT
-
- delete[] tmp;
+ bool ok = transferConstants(angles, dims.iProjAngles, true);
+ if (!ok)
+ return false;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
@@ -356,7 +350,7 @@ bool FanBP_FBPWeighted_internal(float* D_volumeData, unsigned int volumePitch,
cudaStreamCreate(&stream);
for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) {
- devFanBP_FBPWeighted<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale);
+ devFanBP<true><<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale);
}
cudaThreadSynchronize();
@@ -377,17 +371,9 @@ bool FanBP_SART(float* D_volumeData, unsigned int volumePitch,
// only one angle
bindProjDataTexture(D_projData, projPitch, dims.iProjDets, 1, cudaAddressModeClamp);
- // transfer angle to constant memory
-#define TRANSFER_TO_CONSTANT(name) do { cudaMemcpyToSymbol(gC_##name, &(angles[angle].f##name), sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
-
- TRANSFER_TO_CONSTANT(SrcX);
- TRANSFER_TO_CONSTANT(SrcY);
- TRANSFER_TO_CONSTANT(DetSX);
- TRANSFER_TO_CONSTANT(DetSY);
- TRANSFER_TO_CONSTANT(DetUX);
- TRANSFER_TO_CONSTANT(DetUY);
-
-#undef TRANSFER_TO_CONSTANT
+ bool ok = transferConstants(angles + angle, 1, false);
+ if (!ok)
+ return false;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
@@ -448,66 +434,3 @@ bool FanBP_FBPWeighted(float* D_volumeData, unsigned int volumePitch,
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_projData;
-
- SDimensions dims;
- dims.iVolWidth = 128;
- dims.iVolHeight = 128;
- dims.iProjAngles = 180;
- dims.iProjDets = 256;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, projPitch;
-
- SFanProjection projs[180];
-
- projs[0].fSrcX = 0.0f;
- projs[0].fSrcY = 1536.0f;
- projs[0].fDetSX = 128.0f;
- projs[0].fDetSY = -512.0f;
- projs[0].fDetUX = -1.0f;
- projs[0].fDetUY = 0.0f;
-
-#define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0)
-
- for (int i = 1; i < 180; ++i) {
- ROTATE0(Src, i, i*2*M_PI/180);
- ROTATE0(DetS, i, i*2*M_PI/180);
- ROTATE0(DetU, i, i*2*M_PI/180);
- }
-
-#undef ROTATE0
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
- printf("pitch: %u\n", projPitch);
-
- unsigned int y, x;
- float* sino = loadImage("sino.png", y, x);
-
- float* img = new float[dims.iVolWidth*dims.iVolHeight];
-
- memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float));
-
- copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- FanBP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs, 1.0f);
-
- copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
-
- saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
-
- return 0;
-}
-#endif
diff --git a/cuda/2d/fan_fp.cu b/cuda/2d/fan_fp.cu
index 3479650..60c02f8 100644
--- a/cuda/2d/fan_fp.cu
+++ b/cuda/2d/fan_fp.cu
@@ -28,10 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -308,84 +304,3 @@ bool FanFP(float* D_volumeData, unsigned int volumePitch,
}
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_projData;
-
- SDimensions dims;
- dims.iVolWidth = 128;
- dims.iVolHeight = 128;
- dims.iProjAngles = 180;
- dims.iProjDets = 256;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, projPitch;
-
- SFanProjection projs[180];
-
- projs[0].fSrcX = 0.0f;
- projs[0].fSrcY = 1536.0f;
- projs[0].fDetSX = 128.0f;
- projs[0].fDetSY = -512.0f;
- projs[0].fDetUX = -1.0f;
- projs[0].fDetUY = 0.0f;
-
-#define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0)
-
- for (int i = 1; i < 180; ++i) {
- ROTATE0(Src, i, i*2*M_PI/180);
- ROTATE0(DetS, i, i*2*M_PI/180);
- ROTATE0(DetU, i, i*2*M_PI/180);
- }
-
-#undef ROTATE0
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
- printf("pitch: %u\n", projPitch);
-
- unsigned int y, x;
- float* img = loadImage("phantom128.png", y, x);
-
- float* sino = new float[dims.iProjAngles * dims.iProjDets];
-
- memset(sino, 0, dims.iProjAngles * dims.iProjDets * sizeof(float));
-
- copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- FanFP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs, 1.0f);
-
- delete[] angle;
-
- copySinogramFromDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- float s = 0.0f;
- for (unsigned int y = 0; y < dims.iProjAngles; ++y)
- for (unsigned int x = 0; x < dims.iProjDets; ++x)
- s += sino[y*dims.iProjDets+x] * sino[y*dims.iProjDets+x];
- printf("cpu norm: %f\n", s);
-
- //zeroVolume(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
- s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
- printf("gpu norm: %f\n", s);
-
- saveImage("sino.png",dims.iProjAngles,dims.iProjDets,sino);
-
-
- return 0;
-}
-#endif
diff --git a/cuda/2d/fbp.cu b/cuda/2d/fbp.cu
index a5b8a7a..4fc3983 100644
--- a/cuda/2d/fbp.cu
+++ b/cuda/2d/fbp.cu
@@ -58,7 +58,8 @@ int FBP::calcFourierFilterSize(int _iDetectorCount)
FBP::FBP() : ReconAlgo()
{
D_filter = 0;
-
+ m_bShortScan = false;
+ fReconstructionScale = 1.0f;
}
FBP::~FBP()
@@ -72,6 +73,8 @@ void FBP::reset()
freeComplexOnDevice((cufftComplex *)D_filter);
D_filter = 0;
}
+ m_bShortScan = false;
+ fReconstructionScale = 1.0f;
}
bool FBP::init()
@@ -79,6 +82,12 @@ bool FBP::init()
return true;
}
+bool FBP::setReconstructionScale(float fScale)
+{
+ fReconstructionScale = fScale;
+ return true;
+}
+
bool FBP::setFilter(const astra::SFilterConfig &_cfg)
{
if (D_filter)
@@ -292,7 +301,7 @@ bool FBP::iterate(unsigned int iterations)
astraCUDA3d::FDK_PreWeight(tmp, fOriginSource,
fOriginDetector, 0.0f,
- fFanDetSize, 1.0f, /* fPixelSize */ 1.0f,
+ fFanDetSize, 1.0f,
m_bShortScan, dims3d, pfAngles);
} else {
// TODO: How should different detector pixel size in different
@@ -319,17 +328,14 @@ bool FBP::iterate(unsigned int iterations)
}
if (fanProjs) {
- float fOutputScale = 1.0 / (/*fPixelSize * fPixelSize * fPixelSize * */ fFanDetSize * fFanDetSize);
-
- ok = FanBP_FBPWeighted(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, fanProjs, fOutputScale);
+ ok = FanBP_FBPWeighted(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, fanProjs, fProjectorScale * fReconstructionScale);
} else {
// scale by number of angles. For the fan-beam case, this is already
// handled by FDK_PreWeight
float fOutputScale = (M_PI / 2.0f) / (float)dims.iProjAngles;
- //fOutputScale /= fDetSize * fDetSize;
- ok = BP(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, parProjs, fOutputScale);
+ ok = BP(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, parProjs, fOutputScale * fProjectorScale * fReconstructionScale);
}
if(!ok)
{
diff --git a/cuda/2d/fft.cu b/cuda/2d/fft.cu
index 2e94b79..8361ad2 100644
--- a/cuda/2d/fft.cu
+++ b/cuda/2d/fft.cu
@@ -314,210 +314,3 @@ void genCuFFTFilter(const SFilterConfig &_cfg, int _iProjectionCount,
}
-
-
-#ifdef STANDALONE
-
-__global__ static void doubleFourierOutput_kernel(int _iProjectionCount,
- int _iDetectorCount,
- cufftComplex* _pFourierOutput)
-{
- int iIndex = threadIdx.x + blockIdx.x * blockDim.x;
- int iProjectionIndex = iIndex / _iDetectorCount;
- int iDetectorIndex = iIndex % _iDetectorCount;
-
- if(iProjectionIndex >= _iProjectionCount)
- {
- return;
- }
-
- if(iDetectorIndex <= (_iDetectorCount / 2))
- {
- return;
- }
-
- int iOtherDetectorIndex = _iDetectorCount - iDetectorIndex;
-
- _pFourierOutput[iProjectionIndex * _iDetectorCount + iDetectorIndex].x = _pFourierOutput[iProjectionIndex * _iDetectorCount + iOtherDetectorIndex].x;
- _pFourierOutput[iProjectionIndex * _iDetectorCount + iDetectorIndex].y = -_pFourierOutput[iProjectionIndex * _iDetectorCount + iOtherDetectorIndex].y;
-}
-
-static void doubleFourierOutput(int _iProjectionCount, int _iDetectorCount,
- cufftComplex * _pFourierOutput)
-{
- const int iBlockSize = 256;
- int iElementCount = _iProjectionCount * _iDetectorCount;
- int iBlockCount = (iElementCount + iBlockSize - 1) / iBlockSize;
-
- doubleFourierOutput_kernel<<< iBlockCount, iBlockSize >>>(_iProjectionCount,
- _iDetectorCount,
- _pFourierOutput);
- CHECK_ERROR("doubleFourierOutput_kernel failed");
-}
-
-
-
-static void writeToMatlabFile(const char * _fileName, const float * _pfData,
- int _iRowCount, int _iColumnCount)
-{
- std::ofstream out(_fileName);
-
- for(int iRowIndex = 0; iRowIndex < _iRowCount; iRowIndex++)
- {
- for(int iColumnIndex = 0; iColumnIndex < _iColumnCount; iColumnIndex++)
- {
- out << _pfData[iColumnIndex + iRowIndex * _iColumnCount] << " ";
- }
-
- out << std::endl;
- }
-}
-
-static void convertComplexToRealImg(const cufftComplex * _pComplex,
- int _iElementCount,
- float * _pfReal, float * _pfImaginary)
-{
- for(int iIndex = 0; iIndex < _iElementCount; iIndex++)
- {
- _pfReal[iIndex] = _pComplex[iIndex].x;
- _pfImaginary[iIndex] = _pComplex[iIndex].y;
- }
-}
-
-void testCudaFFT()
-{
- const int iProjectionCount = 2;
- const int iDetectorCount = 1024;
- const int iTotalElementCount = iProjectionCount * iDetectorCount;
-
- float * pfHostProj = new float[iTotalElementCount];
- memset(pfHostProj, 0, sizeof(float) * iTotalElementCount);
-
- for(int iProjectionIndex = 0; iProjectionIndex < iProjectionCount; iProjectionIndex++)
- {
- for(int iDetectorIndex = 0; iDetectorIndex < iDetectorCount; iDetectorIndex++)
- {
-// int
-
-// pfHostProj[iIndex] = (float)rand() / (float)RAND_MAX;
- }
- }
-
- writeToMatlabFile("proj.mat", pfHostProj, iProjectionCount, iDetectorCount);
-
- float * pfDevProj = NULL;
- SAFE_CALL(cudaMalloc((void **)&pfDevProj, sizeof(float) * iTotalElementCount));
- SAFE_CALL(cudaMemcpy(pfDevProj, pfHostProj, sizeof(float) * iTotalElementCount, cudaMemcpyHostToDevice));
-
- cufftComplex * pDevFourProj = NULL;
- SAFE_CALL(cudaMalloc((void **)&pDevFourProj, sizeof(cufftComplex) * iTotalElementCount));
-
- cufftHandle plan;
- cufftResult result;
-
- result = cufftPlan1d(&plan, iDetectorCount, CUFFT_R2C, iProjectionCount);
- if(result != CUFFT_SUCCESS)
- {
- ASTRA_ERROR("Failed to plan 1d r2c fft");
- }
-
- result = cufftExecR2C(plan, pfDevProj, pDevFourProj);
- if(result != CUFFT_SUCCESS)
- {
- ASTRA_ERROR("Failed to exec 1d r2c fft");
- }
-
- cufftDestroy(plan);
-
- doubleFourierOutput(iProjectionCount, iDetectorCount, pDevFourProj);
-
- cufftComplex * pHostFourProj = new cufftComplex[iTotalElementCount];
- SAFE_CALL(cudaMemcpy(pHostFourProj, pDevFourProj, sizeof(cufftComplex) * iTotalElementCount, cudaMemcpyDeviceToHost));
-
- float * pfHostFourProjReal = new float[iTotalElementCount];
- float * pfHostFourProjImaginary = new float[iTotalElementCount];
-
- convertComplexToRealImg(pHostFourProj, iTotalElementCount, pfHostFourProjReal, pfHostFourProjImaginary);
-
- writeToMatlabFile("proj_four_real.mat", pfHostFourProjReal, iProjectionCount, iDetectorCount);
- writeToMatlabFile("proj_four_imaginary.mat", pfHostFourProjImaginary, iProjectionCount, iDetectorCount);
-
- float * pfDevInFourProj = NULL;
- SAFE_CALL(cudaMalloc((void **)&pfDevInFourProj, sizeof(float) * iTotalElementCount));
-
- result = cufftPlan1d(&plan, iDetectorCount, CUFFT_C2R, iProjectionCount);
- if(result != CUFFT_SUCCESS)
- {
- ASTRA_ERROR("Failed to plan 1d c2r fft");
- }
-
- result = cufftExecC2R(plan, pDevFourProj, pfDevInFourProj);
- if(result != CUFFT_SUCCESS)
- {
- ASTRA_ERROR("Failed to exec 1d c2r fft");
- }
-
- cufftDestroy(plan);
-
- rescaleInverseFourier(iProjectionCount, iDetectorCount, pfDevInFourProj);
-
- float * pfHostInFourProj = new float[iTotalElementCount];
- SAFE_CALL(cudaMemcpy(pfHostInFourProj, pfDevInFourProj, sizeof(float) * iTotalElementCount, cudaMemcpyDeviceToHost));
-
- writeToMatlabFile("in_four.mat", pfHostInFourProj, iProjectionCount, iDetectorCount);
-
- SAFE_CALL(cudaFree(pDevFourProj));
- SAFE_CALL(cudaFree(pfDevProj));
-
- delete [] pfHostInFourProj;
- delete [] pfHostFourProjReal;
- delete [] pfHostFourProjImaginary;
- delete [] pfHostProj;
- delete [] pHostFourProj;
-}
-
-void downloadDebugFilterComplex(float * _pfHostSinogram, int _iProjectionCount,
- int _iDetectorCount,
- cufftComplex * _pDevFilter,
- int _iFilterDetCount)
-{
- cufftComplex * pHostFilter = NULL;
- size_t complMemSize = sizeof(cufftComplex) * _iFilterDetCount * _iProjectionCount;
- pHostFilter = (cufftComplex *)malloc(complMemSize);
- SAFE_CALL(cudaMemcpy(pHostFilter, _pDevFilter, complMemSize, cudaMemcpyDeviceToHost));
-
- for(int iTargetProjIndex = 0; iTargetProjIndex < _iProjectionCount; iTargetProjIndex++)
- {
- for(int iTargetDetIndex = 0; iTargetDetIndex < min(_iDetectorCount, _iFilterDetCount); iTargetDetIndex++)
- {
- cufftComplex source = pHostFilter[iTargetDetIndex + iTargetProjIndex * _iFilterDetCount];
- float fReadValue = sqrtf(source.x * source.x + source.y * source.y);
- _pfHostSinogram[iTargetDetIndex + iTargetProjIndex * _iDetectorCount] = fReadValue;
- }
- }
-
- free(pHostFilter);
-}
-
-void downloadDebugFilterReal(float * _pfHostSinogram, int _iProjectionCount,
- int _iDetectorCount, float * _pfDevFilter,
- int _iFilterDetCount)
-{
- float * pfHostFilter = NULL;
- size_t memSize = sizeof(float) * _iFilterDetCount * _iProjectionCount;
- pfHostFilter = (float *)malloc(memSize);
- SAFE_CALL(cudaMemcpy(pfHostFilter, _pfDevFilter, memSize, cudaMemcpyDeviceToHost));
-
- for(int iTargetProjIndex = 0; iTargetProjIndex < _iProjectionCount; iTargetProjIndex++)
- {
- for(int iTargetDetIndex = 0; iTargetDetIndex < min(_iDetectorCount, _iFilterDetCount); iTargetDetIndex++)
- {
- float fSource = pfHostFilter[iTargetDetIndex + iTargetProjIndex * _iFilterDetCount];
- _pfHostSinogram[iTargetDetIndex + iTargetProjIndex * _iDetectorCount] = fSource;
- }
- }
-
- free(pfHostFilter);
-}
-
-#endif
diff --git a/cuda/2d/par_bp.cu b/cuda/2d/par_bp.cu
index 09a6554..f080abb 100644
--- a/cuda/2d/par_bp.cu
+++ b/cuda/2d/par_bp.cu
@@ -28,10 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -53,6 +49,7 @@ const unsigned int g_MaxAngles = 2560;
__constant__ float gC_angle_scaled_sin[g_MaxAngles];
__constant__ float gC_angle_scaled_cos[g_MaxAngles];
__constant__ float gC_angle_offset[g_MaxAngles];
+__constant__ float gC_angle_scale[g_MaxAngles];
static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height, cudaTextureAddressMode mode = cudaAddressModeBorder)
{
@@ -70,6 +67,7 @@ static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int wi
return true;
}
+// TODO: Templated version with/without scale? (Or only the global outputscale)
__global__ void devBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale)
{
const int relX = threadIdx.x;
@@ -97,9 +95,10 @@ __global__ void devBP(float* D_volData, unsigned int volPitch, unsigned int star
const float scaled_cos_theta = gC_angle_scaled_cos[angle];
const float scaled_sin_theta = gC_angle_scaled_sin[angle];
const float TOffset = gC_angle_offset[angle];
+ const float scale = gC_angle_scale[angle];
const float fT = fX * scaled_cos_theta - fY * scaled_sin_theta + TOffset;
- fVal += tex2D(gT_projTexture, fT, fA);
+ fVal += tex2D(gT_projTexture, fT, fA) * scale;
fA += 1.0f;
}
@@ -138,6 +137,7 @@ __global__ void devBP_SS(float* D_volData, unsigned int volPitch, unsigned int s
const float cos_theta = gC_angle_scaled_cos[angle];
const float sin_theta = gC_angle_scaled_sin[angle];
const float TOffset = gC_angle_offset[angle];
+ const float scale = gC_angle_scale[angle];
float fT = fX * cos_theta - fY * sin_theta + TOffset;
@@ -145,7 +145,7 @@ __global__ void devBP_SS(float* D_volData, unsigned int volPitch, unsigned int s
float fTy = fT;
fT += fSubStep * cos_theta;
for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
- fVal += tex2D(gT_projTexture, fTy, fA);
+ fVal += tex2D(gT_projTexture, fTy, fA) * scale;
fTy -= fSubStep * sin_theta;
}
}
@@ -172,6 +172,8 @@ __global__ void devBP_SART(float* D_volData, unsigned int volPitch, float offset
const float fT = fX * angle_cos - fY * angle_sin + offset;
const float fVal = tex2D(gT_projTexture, fT, 0.5f);
+ // NB: The 'scale' constant in devBP is cancelled out by the SART weighting
+
D_volData[Y*volPitch+X] += fVal * fOutputScale;
}
@@ -186,27 +188,34 @@ bool BP_internal(float* D_volumeData, unsigned int volumePitch,
float* angle_scaled_sin = new float[dims.iProjAngles];
float* angle_scaled_cos = new float[dims.iProjAngles];
float* angle_offset = new float[dims.iProjAngles];
+ float* angle_scale = new float[dims.iProjAngles];
bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
double d = angles[i].fDetUX * angles[i].fRayY - angles[i].fDetUY * angles[i].fRayX;
angle_scaled_cos[i] = angles[i].fRayY / d;
- angle_scaled_sin[i] = -angles[i].fRayX / d; // TODO: Check signs
+ angle_scaled_sin[i] = -angles[i].fRayX / d;
angle_offset[i] = (angles[i].fDetSY * angles[i].fRayX - angles[i].fDetSX * angles[i].fRayY) / d;
+ angle_scale[i] = sqrt(angles[i].fRayX * angles[i].fRayX + angles[i].fRayY * angles[i].fRayY) / abs(d);
}
+ //fprintf(stderr, "outputscale in BP_internal: %f, %f\n", fOutputScale, angle_scale[0]);
+ //fprintf(stderr, "ray in BP_internal: %f,%f (length %f)\n", angles[0].fRayX, angles[0].fRayY, sqrt(angles[0].fRayX * angles[0].fRayX + angles[0].fRayY * angles[0].fRayY));
cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_scaled_sin, angle_scaled_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_scaled_cos, angle_scaled_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
cudaError_t e3 = cudaMemcpyToSymbol(gC_angle_offset, angle_offset, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
+ cudaError_t e4 = cudaMemcpyToSymbol(gC_angle_scale, angle_scale, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
assert(e1 == cudaSuccess);
assert(e2 == cudaSuccess);
assert(e3 == cudaSuccess);
+ assert(e4 == cudaSuccess);
delete[] angle_scaled_sin;
delete[] angle_scaled_cos;
delete[] angle_offset;
+ delete[] angle_scale;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
@@ -267,6 +276,8 @@ bool BP_SART(float* D_volumeData, unsigned int volumePitch,
float angle_scaled_cos = angles[angle].fRayY / d;
float angle_scaled_sin = -angles[angle].fRayX / d; // TODO: Check signs
float angle_offset = (angles[angle].fDetSY * angles[angle].fRayX - angles[angle].fDetSX * angles[angle].fRayY) / d;
+ // NB: The adjoint scaling factor from regular BP is cancelled out by the SART weighting
+ //fOutputScale *= sqrt(angles[angle].fRayX * angles[angle].fRayX + angles[angle].fRayY * angles[angle].fRayY) / abs(d);
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
@@ -282,55 +293,3 @@ bool BP_SART(float* D_volumeData, unsigned int volumePitch,
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_projData;
-
- SDimensions dims;
- dims.iVolWidth = 1024;
- dims.iVolHeight = 1024;
- dims.iProjAngles = 512;
- dims.iProjDets = 1536;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
-
- unsigned int volumePitch, projPitch;
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
- printf("pitch: %u\n", projPitch);
-
- unsigned int y, x;
- float* sino = loadImage("sino.png", y, x);
-
- float* img = new float[dims.iVolWidth*dims.iVolHeight];
-
- memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float));
-
- copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- BP(D_volumeData, volumePitch, D_projData, projPitch, dims, angle, 0, 1.0f);
-
- delete[] angle;
-
- copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
-
- saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
-
- return 0;
-}
-#endif
diff --git a/cuda/2d/par_fp.cu b/cuda/2d/par_fp.cu
index 0835301..ea436c3 100644
--- a/cuda/2d/par_fp.cu
+++ b/cuda/2d/par_fp.cu
@@ -28,10 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -115,10 +111,9 @@ __global__ void FPhorizontal_simple(float* D_projData, unsigned int projPitch, u
float fSliceStep = cos_theta / sin_theta;
float fDistCorr;
if (sin_theta > 0.0f)
- fDistCorr = -fDetStep;
+ fDistCorr = outputScale / sin_theta;
else
- fDistCorr = fDetStep;
- fDistCorr *= outputScale;
+ fDistCorr = -outputScale / sin_theta;
float fVal = 0.0f;
// project detector on slice
@@ -193,10 +188,9 @@ __global__ void FPvertical_simple(float* D_projData, unsigned int projPitch, uns
float fSliceStep = sin_theta / cos_theta;
float fDistCorr;
if (cos_theta < 0.0f)
- fDistCorr = -fDetStep;
+ fDistCorr = -outputScale / cos_theta;
else
- fDistCorr = fDetStep;
- fDistCorr *= outputScale;
+ fDistCorr = outputScale / cos_theta;
float fVal = 0.0f;
float fP = (detector - 0.5f*dims.iProjDets + 0.5f - gC_angle_offset[angle]) * fDetStep + (startSlice - 0.5f*dims.iVolHeight + 0.5f) * fSliceStep + 0.5f*dims.iVolWidth - 0.5f + 0.5f;
@@ -375,65 +369,3 @@ bool FP(float* D_volumeData, unsigned int volumePitch,
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_projData;
-
- SDimensions dims;
- dims.iVolWidth = 1024;
- dims.iVolHeight = 1024;
- dims.iProjAngles = 512;
- dims.iProjDets = 1536;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, projPitch;
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
- printf("pitch: %u\n", projPitch);
-
- unsigned int y, x;
- float* img = loadImage("phantom.png", y, x);
-
- float* sino = new float[dims.iProjAngles * dims.iProjDets];
-
- memset(sino, 0, dims.iProjAngles * dims.iProjDets * sizeof(float));
-
- copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- FP(D_volumeData, volumePitch, D_projData, projPitch, dims, angle, 0, 1.0f);
-
- delete[] angle;
-
- copySinogramFromDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
-
- float s = 0.0f;
- for (unsigned int y = 0; y < dims.iProjAngles; ++y)
- for (unsigned int x = 0; x < dims.iProjDets; ++x)
- s += sino[y*dims.iProjDets+x] * sino[y*dims.iProjDets+x];
- printf("cpu norm: %f\n", s);
-
- //zeroVolume(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
- s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles, 1, 0);
- printf("gpu norm: %f\n", s);
-
- saveImage("sino.png",dims.iProjAngles,dims.iProjDets,sino);
-
-
- return 0;
-}
-#endif
diff --git a/cuda/2d/sart.cu b/cuda/2d/sart.cu
index 64973ba..12ad6df 100644
--- a/cuda/2d/sart.cu
+++ b/cuda/2d/sart.cu
@@ -254,11 +254,11 @@ bool SART::callFP_SART(float* D_volumeData, unsigned int volumePitch,
if (parProjs) {
assert(!fanProjs);
return FP(D_volumeData, volumePitch, D_projData, projPitch,
- d, &parProjs[angle], outputScale);
+ d, &parProjs[angle], outputScale * fProjectorScale);
} else {
assert(fanProjs);
return FanFP(D_volumeData, volumePitch, D_projData, projPitch,
- d, &fanProjs[angle], outputScale);
+ d, &fanProjs[angle], outputScale * fProjectorScale);
}
}
@@ -266,6 +266,7 @@ bool SART::callBP_SART(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
unsigned int angle, float outputScale)
{
+ // NB: No fProjectorScale here, as that it is cancelled out in the SART weighting
if (parProjs) {
assert(!fanProjs);
return BP_SART(D_volumeData, volumePitch, D_projData, projPitch,
diff --git a/cuda/2d/sirt.cu b/cuda/2d/sirt.cu
index 2621490..2c5fdc9 100644
--- a/cuda/2d/sirt.cu
+++ b/cuda/2d/sirt.cu
@@ -29,10 +29,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
@@ -302,62 +298,3 @@ float SIRT::computeDiffNorm()
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA;
-
-int main()
-{
- float* D_volumeData;
- float* D_sinoData;
-
- SDimensions dims;
- dims.iVolWidth = 1024;
- dims.iVolHeight = 1024;
- dims.iProjAngles = 512;
- dims.iProjDets = 1536;
- dims.fDetScale = 1.0f;
- dims.iRaysPerDet = 1;
- unsigned int volumePitch, sinoPitch;
-
- allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
- zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
- printf("pitch: %u\n", volumePitch);
-
- allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
- zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
- printf("pitch: %u\n", sinoPitch);
-
- unsigned int y, x;
- float* sino = loadImage("sino.png", y, x);
-
- float* img = new float[dims.iVolWidth*dims.iVolHeight];
-
- copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
-
- float* angle = new float[dims.iProjAngles];
-
- for (unsigned int i = 0; i < dims.iProjAngles; ++i)
- angle[i] = i*(M_PI/dims.iProjAngles);
-
- SIRT sirt;
-
- sirt.setGeometry(dims, angle);
- sirt.init();
-
- sirt.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
-
- sirt.iterate(25);
-
-
- delete[] angle;
-
- copyVolumeFromDevice(img, dims.iVolWidth, dims, D_volumeData, volumePitch);
-
- saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
-
- return 0;
-}
-#endif
-
diff --git a/cuda/3d/cgls3d.cu b/cuda/3d/cgls3d.cu
index 10c5f1e..4829574 100644
--- a/cuda/3d/cgls3d.cu
+++ b/cuda/3d/cgls3d.cu
@@ -33,10 +33,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include <cstdio>
#include <cassert>
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
namespace astraCUDA3d {
CGLS::CGLS() : ReconAlgo3D()
@@ -263,161 +259,3 @@ bool doCGLS(cudaPitchedPtr& D_volumeData,
}
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA3d;
-
-int main()
-{
- SDimensions3D dims;
- dims.iVolX = 256;
- dims.iVolY = 256;
- dims.iVolZ = 256;
- dims.iProjAngles = 100;
- dims.iProjU = 512;
- dims.iProjV = 512;
- dims.iRaysPerDet = 1;
-
- SConeProjection angle[100];
- angle[0].fSrcX = -2905.6;
- angle[0].fSrcY = 0;
- angle[0].fSrcZ = 0;
-
- angle[0].fDetSX = 694.4;
- angle[0].fDetSY = -122.4704;
- angle[0].fDetSZ = -122.4704;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = .4784;
- //angle[0].fDetUY = .5;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = .4784;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 100; ++i) {
- angle[i] = angle[0];
- ROTATE0(Src, i, i*2*M_PI/100);
- ROTATE0(DetS, i, i*2*M_PI/100);
- ROTATE0(DetU, i, i*2*M_PI/100);
- ROTATE0(DetV, i, i*2*M_PI/100);
- }
-#undef ROTATE0
-
-
- cudaPitchedPtr volData = allocateVolumeData(dims);
- cudaPitchedPtr projData = allocateProjectionData(dims);
- zeroProjectionData(projData, dims);
-
- float* pbuf = new float[100*512*512];
- copyProjectionsFromDevice(pbuf, projData, dims);
- copyProjectionsToDevice(pbuf, projData, dims);
- delete[] pbuf;
-
-#if 0
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256; ++i) {
- for (unsigned int y = 0; y < 256; ++y)
- for (unsigned int x = 0; x < 256; ++x)
- slice[y*256+x] = (i-127.5)*(i-127.5)+(y-127.5)*(y-127.5)+(x-127.5)*(x-127.5) < 4900 ? 1.0f : 0.0f;
-
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
- }
- astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
-
-#else
-
- for (int i = 0; i < 100; ++i) {
- char fname[32];
- sprintf(fname, "Tiffs/%04d.png", 4*i);
- unsigned int w,h;
- float* bufp = loadImage(fname, w,h);
-
- for (int j = 0; j < 512*512; ++j) {
- float v = bufp[j];
- if (v > 236.0f) v = 236.0f;
- v = logf(236.0f / v);
- bufp[j] = 256*v;
- }
-
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(((float*)projData.ptr)+100*512*j+512*i, bufp+512*j, 512*sizeof(float), cudaMemcpyHostToDevice);
- }
-
- delete[] bufp;
-
- }
-#endif
-
-#if 0
- float* bufs = new float[100*512];
-
- for (int i = 0; i < 512; ++i) {
- cudaMemcpy(bufs, ((float*)projData.ptr)+100*512*i, 100*512*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
-
- char fname[20];
- sprintf(fname, "sino%03d.png", i);
- saveImage(fname, 100, 512, bufs);
- }
-
- float* bufp = new float[512*512];
-
- for (int i = 0; i < 100; ++i) {
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
- }
-
- char fname[20];
- sprintf(fname, "proj%03d.png", i);
- saveImage(fname, 512, 512, bufp);
- }
-#endif
-
- zeroVolumeData(volData, dims);
-
- cudaPitchedPtr maskData;
- maskData.ptr = 0;
-
- astraCUDA3d::doCGLS(volData, projData, maskData, dims, angle, 50);
-#if 1
- float* buf = new float[256*256];
-
- for (int i = 0; i < 256; ++i) {
- cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
-
- char fname[20];
- sprintf(fname, "vol%03d.png", i);
- saveImage(fname, 256, 256, buf);
- }
-#endif
-
- return 0;
-}
-#endif
-
diff --git a/cuda/3d/cone_bp.cu b/cuda/3d/cone_bp.cu
index feebda2..7312bbc 100644
--- a/cuda/3d/cone_bp.cu
+++ b/cuda/3d/cone_bp.cu
@@ -28,11 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
-#ifdef STANDALONE
-#include "astra/cuda/3d/cone_fp.h"
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -55,7 +50,13 @@ static const unsigned int g_volBlockY = 32;
static const unsigned g_MaxAngles = 1024;
-__constant__ float gC_C[12*g_MaxAngles];
+struct DevConeParams {
+ float4 fNumU;
+ float4 fNumV;
+ float4 fDen;
+};
+
+__constant__ DevConeParams gC_C[g_MaxAngles];
bool bindProjDataTexture(const cudaArray* array)
{
@@ -118,16 +119,13 @@ __global__ void dev_cone_BP(void* D_volData, unsigned int volPitch, int startAng
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
- float4 fCu = make_float4(gC_C[12*angle+0], gC_C[12*angle+1], gC_C[12*angle+2], gC_C[12*angle+3]);
- float4 fCv = make_float4(gC_C[12*angle+4], gC_C[12*angle+5], gC_C[12*angle+6], gC_C[12*angle+7]);
- float4 fCd = make_float4(gC_C[12*angle+8], gC_C[12*angle+9], gC_C[12*angle+10], gC_C[12*angle+11]);
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float4 fCd = gC_C[angle].fDen;
float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
- float fDen = fCd.w + fX * fCd.x + fY * fCd.y + fZ * fCd.z;
-
- // fCd.w = -|| u v s || (determinant of 3x3 matrix with cols u,v,s)
- // fDen = || u v (x-s) ||
+ float fDen = (FDKWEIGHT ? 1.0f : fCd.w) + fX * fCd.x + fY * fCd.y + fZ * fCd.z;
float fU,fV, fr;
@@ -137,18 +135,7 @@ __global__ void dev_cone_BP(void* D_volData, unsigned int volPitch, int startAng
fU = fUNum * fr;
fV = fVNum * fr;
float fVal = tex3D(gT_coneProjTexture, fU, fAngle, fV);
- if (FDKWEIGHT) {
- // The correct factor here is this one:
- // Z[idx] += (fr*fCd.w)*(fr*fCd.w)*fVal;
- // This is the square of the inverse magnification factor
- // from fX,fY,fZ to the detector.
-
- // Since we are assuming we have a circular cone
- // beam trajectory, fCd.w is constant, and we instead
- // multiply by fCd.w*fCd.w in the FDK preweighting step.
- Z[idx] += fr*fr*fVal;
- } else
- Z[idx] += fVal;
+ Z[idx] += fr*fr*fVal;
fUNum += fCu.z;
fVNum += fCv.z;
@@ -215,19 +202,9 @@ __global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, int start
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
-
- const float fCux = gC_C[12*angle+0];
- const float fCuy = gC_C[12*angle+1];
- const float fCuz = gC_C[12*angle+2];
- const float fCuc = gC_C[12*angle+3];
- const float fCvx = gC_C[12*angle+4];
- const float fCvy = gC_C[12*angle+5];
- const float fCvz = gC_C[12*angle+6];
- const float fCvc = gC_C[12*angle+7];
- const float fCdx = gC_C[12*angle+8];
- const float fCdy = gC_C[12*angle+9];
- const float fCdz = gC_C[12*angle+10];
- const float fCdc = gC_C[12*angle+11];
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float4 fCd = gC_C[angle].fDen;
float fXs = fX;
for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
@@ -236,14 +213,15 @@ __global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, int start
float fZs = fZ;
for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
- const float fUNum = fCuc + fXs * fCux + fYs * fCuy + fZs * fCuz;
- const float fVNum = fCvc + fXs * fCvx + fYs * fCvy + fZs * fCvz;
- const float fDen = fCdc + fXs * fCdx + fYs * fCdy + fZs * fCdz;
+ const float fUNum = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
+ const float fVNum = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
+ const float fDen = fCd.w + fX * fCd.x + fY * fCd.y + fZ * fCd.z;
- const float fU = fUNum / fDen;
- const float fV = fVNum / fDen;
+ const float fr = __fdividef(1.0f, fDen);
+ const float fU = fUNum * fr;
+ const float fV = fVNum * fr;
- fVal += tex3D(gT_coneProjTexture, fU, fV, fAngle);
+ fVal += tex3D(gT_coneProjTexture, fU, fV, fAngle) * fr;
fZs += fSubStep;
}
@@ -259,6 +237,76 @@ __global__ void dev_cone_BP_SS(void* D_volData, unsigned int volPitch, int start
}
+bool transferConstants(const SConeProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params)
+{
+ DevConeParams *p = new DevConeParams[iProjAngles];
+
+ // We need three things in the kernel:
+ // projected coordinates of pixels on the detector:
+
+ // u: || (x-s) v (s-d) || / || u v (s-x) ||
+ // v: -|| u (x-s) (s-d) || / || u v (s-x) ||
+
+ // ray density weighting factor for the adjoint
+ // || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
+
+ // FDK weighting factor
+ // ( || u v s || / || u v (s-x) || ) ^ 2
+
+ // Since u and v are ratios with the same denominator, we have
+ // a degree of freedom to scale the denominator. We use that to make
+ // the square of the denominator equal to the relevant weighting factor.
+
+
+ for (unsigned int i = 0; i < iProjAngles; ++i) {
+ Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ);
+ Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ);
+ Vec3 s(angles[i].fSrcX, angles[i].fSrcY, angles[i].fSrcZ);
+ Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ);
+
+
+
+ double fScale;
+ if (!params.bFDKWeighting) {
+ // goal: 1/fDen^2 = || u v (s-d) ||^2 / ( |cross(u,v)| * || u v (s-x) ||^2 )
+ // fDen = ( sqrt(|cross(u,v)|) * || u v (s-x) || ) / || u v (s-d) ||
+ // i.e. scale = sqrt(|cross(u,v)|) * / || u v (s-d) ||
+
+
+ // NB: for cross(u,v) we invert the volume scaling (for the voxel
+ // size normalization) to get the proper dimensions for
+ // the scaling of the adjoint
+
+ fScale = sqrt(scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm()) / det3(u, v, s-d);
+ } else {
+ // goal: 1/fDen = || u v s || / || u v (s-x) ||
+ // fDen = || u v (s-x) || / || u v s ||
+ // i.e., scale = 1 / || u v s ||
+
+ fScale = 1.0 / det3(u, v, s);
+ }
+
+ p[i].fNumU.w = fScale * det3(s,v,d);
+ p[i].fNumU.x = fScale * det3x(v,s-d);
+ p[i].fNumU.y = fScale * det3y(v,s-d);
+ p[i].fNumU.z = fScale * det3z(v,s-d);
+ p[i].fNumV.w = -fScale * det3(s,u,d);
+ p[i].fNumV.x = -fScale * det3x(u,s-d);
+ p[i].fNumV.y = -fScale * det3y(u,s-d);
+ p[i].fNumV.z = -fScale * det3z(u,s-d);
+ p[i].fDen.w = fScale * det3(u, v, s); // == 1.0 for FDK
+ p[i].fDen.x = -fScale * det3x(u, v);
+ p[i].fDen.y = -fScale * det3y(u, v);
+ p[i].fDen.z = -fScale * det3z(u, v);
+ }
+
+ // TODO: Check for errors
+ cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevConeParams), 0, cudaMemcpyHostToDevice);
+
+ return true;
+}
+
+
bool ConeBP_Array(cudaPitchedPtr D_volumeData,
cudaArray *D_projArray,
const SDimensions3D& dims, const SConeProjection* angles,
@@ -267,44 +315,21 @@ bool ConeBP_Array(cudaPitchedPtr D_volumeData,
bindProjDataTexture(D_projArray);
float fOutputScale;
- if (params.bFDKWeighting)
- fOutputScale = params.fOutputScale / (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ);
- else
+ if (params.bFDKWeighting) {
+ // NB: assuming cube voxels here
+ fOutputScale = params.fOutputScale / (params.fVolScaleX);
+ } else {
fOutputScale = params.fOutputScale * (params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ);
+ }
for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) {
unsigned int angleCount = g_MaxAngles;
if (th + angleCount > dims.iProjAngles)
angleCount = dims.iProjAngles - th;
- // transfer angles to constant memory
- float* tmp = new float[12*angleCount];
-
-
- // NB: We increment angles at the end of the loop body.
-
-
-#define TRANSFER_TO_CONSTANT(expr,name) do { for (unsigned int i = 0; i < angleCount; ++i) tmp[12*i+name] = (expr) ; } while (0)
-
- TRANSFER_TO_CONSTANT( (angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetVY - (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetVZ , 0 );
- TRANSFER_TO_CONSTANT( (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetVZ -(angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetVX , 1 );
- TRANSFER_TO_CONSTANT( (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetVX - (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetVY , 2 );
- TRANSFER_TO_CONSTANT( (angles[i].fDetSY*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVY)*angles[i].fSrcX - (angles[i].fDetSX*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVX)*angles[i].fSrcY + (angles[i].fDetSX*angles[i].fDetVY - angles[i].fDetSY*angles[i].fDetVX)*angles[i].fSrcZ , 3 );
-
- TRANSFER_TO_CONSTANT( (angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetUZ-(angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetUY, 4 );
- TRANSFER_TO_CONSTANT( (angles[i].fDetSZ - angles[i].fSrcZ)*angles[i].fDetUX - (angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetUZ , 5 );
- TRANSFER_TO_CONSTANT((angles[i].fDetSX - angles[i].fSrcX)*angles[i].fDetUY-(angles[i].fDetSY - angles[i].fSrcY)*angles[i].fDetUX , 6 );
- TRANSFER_TO_CONSTANT( -(angles[i].fDetSY*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUY)*angles[i].fSrcX + (angles[i].fDetSX*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUX)*angles[i].fSrcY - (angles[i].fDetSX*angles[i].fDetUY - angles[i].fDetSY*angles[i].fDetUX)*angles[i].fSrcZ , 7 );
-
- TRANSFER_TO_CONSTANT( angles[i].fDetUY*angles[i].fDetVZ - angles[i].fDetUZ*angles[i].fDetVY , 8 );
- TRANSFER_TO_CONSTANT( angles[i].fDetUZ*angles[i].fDetVX - angles[i].fDetUX*angles[i].fDetVZ , 9 );
- TRANSFER_TO_CONSTANT( angles[i].fDetUX*angles[i].fDetVY - angles[i].fDetUY*angles[i].fDetVX , 10 );
- TRANSFER_TO_CONSTANT( -angles[i].fSrcX * (angles[i].fDetUY*angles[i].fDetVZ - angles[i].fDetUZ*angles[i].fDetVY) - angles[i].fSrcY * (angles[i].fDetUZ*angles[i].fDetVX - angles[i].fDetUX*angles[i].fDetVZ) - angles[i].fSrcZ * (angles[i].fDetUX*angles[i].fDetVY - angles[i].fDetUY*angles[i].fDetVX) , 11 );
-
-#undef TRANSFER_TO_CONSTANT
- cudaMemcpyToSymbol(gC_C, tmp, angleCount*12*sizeof(float), 0, cudaMemcpyHostToDevice);
-
- delete[] tmp;
+ bool ok = transferConstants(angles, angleCount, params);
+ if (!ok)
+ return false;
dim3 dimBlock(g_volBlockX, g_volBlockY);
@@ -353,168 +378,3 @@ bool ConeBP(cudaPitchedPtr D_volumeData,
}
-
-#ifdef STANDALONE
-int main()
-{
- astraCUDA3d::SDimensions3D dims;
- dims.iVolX = 512;
- dims.iVolY = 512;
- dims.iVolZ = 512;
- dims.iProjAngles = 496;
- dims.iProjU = 512;
- dims.iProjV = 512;
- dims.iRaysPerDetDim = 1;
- dims.iRaysPerVoxelDim = 1;
-
- cudaExtent extentV;
- extentV.width = dims.iVolX*sizeof(float);
- extentV.height = dims.iVolY;
- extentV.depth = dims.iVolZ;
-
- cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&volData, extentV);
-
- cudaExtent extentP;
- extentP.width = dims.iProjU*sizeof(float);
- extentP.height = dims.iProjAngles;
- extentP.depth = dims.iProjV;
-
- cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&projData, extentP);
- cudaMemset3D(projData, 0, extentP);
-
-#if 0
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 1.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
-#if 0
- if (i == 128) {
- for (unsigned int j = 0; j < 256*256; ++j)
- slice[j] = 0.0f;
- }
-#endif
- }
-#endif
-
-
- astraCUDA3d::SConeProjection angle[512];
- angle[0].fSrcX = -5120;
- angle[0].fSrcY = 0;
- angle[0].fSrcZ = 0;
-
- angle[0].fDetSX = 512;
- angle[0].fDetSY = -256;
- angle[0].fDetSZ = -256;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = 1;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = 1;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 512; ++i) {
- angle[i] = angle[0];
- ROTATE0(Src, i, i*2*M_PI/512);
- ROTATE0(DetS, i, i*2*M_PI/512);
- ROTATE0(DetU, i, i*2*M_PI/512);
- ROTATE0(DetV, i, i*2*M_PI/512);
- }
-#undef ROTATE0
-
-#if 0
- astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
-#endif
-#if 0
- float* bufs = new float[180*512];
-
- for (int i = 0; i < 512; ++i) {
- cudaMemcpy(bufs, ((float*)projData.ptr)+180*512*i, 180*512*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
-
- char fname[20];
- sprintf(fname, "sino%03d.png", i);
- saveImage(fname, 180, 512, bufs);
- }
-
- float* bufp = new float[512*512];
-
- for (int i = 0; i < 180; ++i) {
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
- }
-
- char fname[20];
- sprintf(fname, "proj%03d.png", i);
- saveImage(fname, 512, 512, bufp);
- }
-#endif
-#if 0
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 0.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
- }
-#endif
-
- astraCUDA3d::ConeBP(volData, projData, dims, angle, 1.0f);
-#if 0
- float* buf = new float[256*256];
-
- for (int i = 0; i < 256; ++i) {
- cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", volData.pitch, volData.xsize, volData.ysize);
-
- char fname[20];
- sprintf(fname, "vol%03d.png", i);
- saveImage(fname, 256, 256, buf);
- }
-#endif
-
-}
-#endif
diff --git a/cuda/3d/cone_fp.cu b/cuda/3d/cone_fp.cu
index 7e0fae8..bd607fa 100644
--- a/cuda/3d/cone_fp.cu
+++ b/cuda/3d/cone_fp.cu
@@ -28,10 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -368,7 +364,7 @@ bool ConeFP_Array_internal(cudaPitchedPtr D_projData,
SCALE_NONCUBE snoncubeY;
fS1 = params.fVolScaleX / params.fVolScaleY;
snoncubeY.fScale1 = fS1 * fS1;
- fS2 = params.fVolScaleY / params.fVolScaleY;
+ fS2 = params.fVolScaleZ / params.fVolScaleY;
snoncubeY.fScale2 = fS2 * fS2;
snoncubeY.fOutputScale = params.fOutputScale * params.fVolScaleY;
@@ -498,105 +494,3 @@ bool ConeFP(cudaPitchedPtr D_volumeData,
}
-
-#ifdef STANDALONE
-int main()
-{
- SDimensions3D dims;
- dims.iVolX = 256;
- dims.iVolY = 256;
- dims.iVolZ = 256;
- dims.iProjAngles = 32;
- dims.iProjU = 512;
- dims.iProjV = 512;
- dims.iRaysPerDet = 1;
-
- cudaExtent extentV;
- extentV.width = dims.iVolX*sizeof(float);
- extentV.height = dims.iVolY;
- extentV.depth = dims.iVolZ;
-
- cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&volData, extentV);
-
- cudaExtent extentP;
- extentP.width = dims.iProjU*sizeof(float);
- extentP.height = dims.iProjV;
- extentP.depth = dims.iProjAngles;
-
- cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&projData, extentP);
- cudaMemset3D(projData, 0, extentP);
-
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 1.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaError err = cudaMemcpy3D(&p);
- assert(!err);
- }
-
-
- SConeProjection angle[32];
- angle[0].fSrcX = -1536;
- angle[0].fSrcY = 0;
- angle[0].fSrcZ = 200;
-
- angle[0].fDetSX = 512;
- angle[0].fDetSY = -256;
- angle[0].fDetSZ = -256;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = 1;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = 1;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 32; ++i) {
- angle[i] = angle[0];
- ROTATE0(Src, i, i*1*M_PI/180);
- ROTATE0(DetS, i, i*1*M_PI/180);
- ROTATE0(DetU, i, i*1*M_PI/180);
- ROTATE0(DetV, i, i*1*M_PI/180);
- }
-#undef ROTATE0
-
- astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
-
- float* buf = new float[512*512];
-
- cudaMemcpy(buf, ((float*)projData.ptr)+512*512*8, 512*512*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
-
- saveImage("proj.png", 512, 512, buf);
-
-
-}
-#endif
diff --git a/cuda/3d/fdk.cu b/cuda/3d/fdk.cu
index 1294721..456694f 100644
--- a/cuda/3d/fdk.cu
+++ b/cuda/3d/fdk.cu
@@ -32,11 +32,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/2d/fft.h"
-#ifdef STANDALONE
-#include "astra/cuda/3d/cone_fp.h"
-#include "testutil.h"
-#endif
-
#include "astra/Logging.h"
#include <cstdio>
@@ -57,10 +52,13 @@ static const unsigned g_MaxAngles = 12000;
__constant__ float gC_angle[g_MaxAngles];
-// per-detector u/v shifts?
+// TODO: To support non-cube voxels, preweighting needs per-view
+// parameters. NB: Need to properly take into account the
+// anisotropic volume normalization done for that too.
-__global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fZShift, float fDetUSize, float fDetVSize, float fVoxSize, const SDimensions3D dims)
+
+__global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fZShift, float fDetUSize, float fDetVSize, const SDimensions3D dims)
{
float* projData = (float*)D_projData;
int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y;
@@ -88,14 +86,10 @@ __global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsig
// fCentralRayLength / fRayLength : the main FDK preweighting factor
// fSrcOrigin / (fDetUSize * fCentralRayLength)
// : to adjust the filter to the det width
- // || u v s || ^ 2 : see cone_bp.cu, FDKWEIGHT
// pi / (2 * iProjAngles) : scaling of the integral over angles
- // fVoxSize ^ 2 : ...
- const float fW1 = fSrcOrigin * fDetUSize * fDetVSize;
const float fW2 = fCentralRayLength / (fDetUSize * fSrcOrigin);
- const float fW3 = fVoxSize * fVoxSize;
- const float fW = fCentralRayLength * fW1 * fW1 * fW2 * fW3 * (M_PI / 2.0f) / (float)dims.iProjAngles;
+ const float fW = fCentralRayLength * fW2 * (M_PI / 2.0f) / (float)dims.iProjAngles;
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
{
@@ -167,7 +161,7 @@ __global__ void devFDK_ParkerWeight(void* D_projData, unsigned int projPitch, un
bool FDK_PreWeight(cudaPitchedPtr D_projData,
float fSrcOrigin, float fDetOrigin,
float fZShift,
- float fDetUSize, float fDetVSize, float fVoxSize,
+ float fDetUSize, float fDetVSize,
bool bShortScan,
const SDimensions3D& dims, const float* angles)
{
@@ -180,7 +174,7 @@ bool FDK_PreWeight(cudaPitchedPtr D_projData,
int projPitch = D_projData.pitch/sizeof(float);
- devFDK_preweight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fZShift, fDetUSize, fDetVSize, fVoxSize, dims);
+ devFDK_preweight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fZShift, fDetUSize, fDetVSize, dims);
cudaTextForceKernelsCompletion();
@@ -344,9 +338,8 @@ bool FDK(cudaPitchedPtr D_volumeData,
#if 1
- // NB: assuming cube voxels (params.fVolScaleX)
ok = FDK_PreWeight(D_projData, fSrcOrigin, fDetOrigin,
- fZShift, fDetUSize, fDetVSize, params.fVolScaleX,
+ fZShift, fDetUSize, fDetVSize,
bShortScan, dims, pfAngles);
#else
ok = true;
@@ -379,220 +372,3 @@ bool FDK(cudaPitchedPtr D_volumeData,
}
-
-#ifdef STANDALONE
-void dumpVolume(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax)
-{
- float* buf = new float[dims.iVolX*dims.iVolY];
- unsigned int pitch = data.pitch / sizeof(float);
-
- for (int i = 0; i < dims.iVolZ; ++i) {
- cudaMemcpy2D(buf, dims.iVolX*sizeof(float), ((float*)data.ptr)+pitch*dims.iVolY*i, data.pitch, dims.iVolX*sizeof(float), dims.iVolY, cudaMemcpyDeviceToHost);
-
- char fname[512];
- sprintf(fname, filespec, dims.iVolZ-i-1);
- saveImage(fname, dims.iVolY, dims.iVolX, buf, fMin, fMax);
- }
-}
-
-void dumpSinograms(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax)
-{
- float* bufs = new float[dims.iProjAngles*dims.iProjU];
- unsigned int pitch = data.pitch / sizeof(float);
-
- for (int i = 0; i < dims.iProjV; ++i) {
- cudaMemcpy2D(bufs, dims.iProjU*sizeof(float), ((float*)data.ptr)+pitch*dims.iProjAngles*i, data.pitch, dims.iProjU*sizeof(float), dims.iProjAngles, cudaMemcpyDeviceToHost);
-
- char fname[512];
- sprintf(fname, filespec, i);
- saveImage(fname, dims.iProjAngles, dims.iProjU, bufs, fMin, fMax);
- }
-}
-
-void dumpProjections(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax)
-{
- float* bufp = new float[dims.iProjV*dims.iProjU];
- unsigned int pitch = data.pitch / sizeof(float);
-
- for (int i = 0; i < dims.iProjAngles; ++i) {
- for (int j = 0; j < dims.iProjV; ++j) {
- cudaMemcpy(bufp+dims.iProjU*j, ((float*)data.ptr)+pitch*dims.iProjAngles*j+pitch*i, dims.iProjU*sizeof(float), cudaMemcpyDeviceToHost);
- }
-
- char fname[512];
- sprintf(fname, filespec, i);
- saveImage(fname, dims.iProjV, dims.iProjU, bufp, fMin, fMax);
- }
-}
-
-
-
-
-int main()
-{
-#if 0
- SDimensions3D dims;
- dims.iVolX = 512;
- dims.iVolY = 512;
- dims.iVolZ = 512;
- dims.iProjAngles = 180;
- dims.iProjU = 1024;
- dims.iProjV = 1024;
- dims.iRaysPerDet = 1;
-
- cudaExtent extentV;
- extentV.width = dims.iVolX*sizeof(float);
- extentV.height = dims.iVolY;
- extentV.depth = dims.iVolZ;
-
- cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&volData, extentV);
-
- cudaExtent extentP;
- extentP.width = dims.iProjU*sizeof(float);
- extentP.height = dims.iProjAngles;
- extentP.depth = dims.iProjV;
-
- cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&projData, extentP);
- cudaMemset3D(projData, 0, extentP);
-
-#if 0
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 1.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
-#if 0
- if (i == 128) {
- for (unsigned int j = 0; j < 256*256; ++j)
- slice[j] = 0.0f;
- }
-#endif
- }
-#endif
-
- SConeProjection angle[180];
- angle[0].fSrcX = -1536;
- angle[0].fSrcY = 0;
- angle[0].fSrcZ = 0;
-
- angle[0].fDetSX = 1024;
- angle[0].fDetSY = -512;
- angle[0].fDetSZ = 512;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = 1;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = -1;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 180; ++i) {
- angle[i] = angle[0];
- ROTATE0(Src, i, i*2*M_PI/180);
- ROTATE0(DetS, i, i*2*M_PI/180);
- ROTATE0(DetU, i, i*2*M_PI/180);
- ROTATE0(DetV, i, i*2*M_PI/180);
- }
-#undef ROTATE0
-
- astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
-
- //dumpSinograms("sino%03d.png", projData, dims, 0, 512);
- //dumpProjections("proj%03d.png", projData, dims, 0, 512);
-
- astraCUDA3d::zeroVolumeData(volData, dims);
-
- float* angles = new float[dims.iProjAngles];
- for (int i = 0; i < 180; ++i)
- angles[i] = i*2*M_PI/180;
-
- astraCUDA3d::FDK(volData, projData, 1536, 512, 0, 0, dims, angles);
-
- dumpVolume("vol%03d.png", volData, dims, -20, 100);
-
-
-#else
-
- SDimensions3D dims;
- dims.iVolX = 1000;
- dims.iVolY = 999;
- dims.iVolZ = 500;
- dims.iProjAngles = 376;
- dims.iProjU = 1024;
- dims.iProjV = 524;
- dims.iRaysPerDet = 1;
-
- float* angles = new float[dims.iProjAngles];
- for (int i = 0; i < dims.iProjAngles; ++i)
- angles[i] = -i*(M_PI)/360;
-
- cudaPitchedPtr volData = astraCUDA3d::allocateVolumeData(dims);
- cudaPitchedPtr projData = astraCUDA3d::allocateProjectionData(dims);
- astraCUDA3d::zeroProjectionData(projData, dims);
- astraCUDA3d::zeroVolumeData(volData, dims);
-
- timeval t;
- tic(t);
-
- for (int i = 0; i < dims.iProjAngles; ++i) {
- char fname[256];
- sprintf(fname, "/home/wpalenst/tmp/Elke/proj%04d.png", i);
- unsigned int w,h;
- float* bufp = loadImage(fname, w,h);
-
- int pitch = projData.pitch / sizeof(float);
- for (int j = 0; j < dims.iProjV; ++j) {
- cudaMemcpy(((float*)projData.ptr)+dims.iProjAngles*pitch*j+pitch*i, bufp+dims.iProjU*j, dims.iProjU*sizeof(float), cudaMemcpyHostToDevice);
- }
-
- delete[] bufp;
- }
- printf("Load time: %f\n", toc(t));
-
- //dumpSinograms("sino%03d.png", projData, dims, -8.0f, 256.0f);
- //astraCUDA3d::FDK(volData, projData, 7350, 62355, 0, 10, dims, angles);
- //astraCUDA3d::FDK(volData, projData, 7350, -380, 0, 10, dims, angles);
-
- tic(t);
-
- astraCUDA3d::FDK(volData, projData, 7383.29867, 0, 0, 10, dims, angles);
-
- printf("FDK time: %f\n", toc(t));
- tic(t);
-
- dumpVolume("vol%03d.png", volData, dims, -65.9f, 200.0f);
- //dumpVolume("vol%03d.png", volData, dims, 0.0f, 256.0f);
- printf("Save time: %f\n", toc(t));
-
-#endif
-
-
-}
-#endif
diff --git a/cuda/3d/mem3d.cu b/cuda/3d/mem3d.cu
index 697d2d2..50cfe75 100644
--- a/cuda/3d/mem3d.cu
+++ b/cuda/3d/mem3d.cu
@@ -268,7 +268,7 @@ bool FP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, con
return ok;
}
-bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iVoxelSuperSampling, bool bFDKWeighting)
+bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iVoxelSuperSampling)
{
assert(!volData.d->arr);
SDimensions3D dims;
@@ -289,7 +289,7 @@ bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, con
pParProjs, pConeProjs,
params);
- params.bFDKWeighting = bFDKWeighting;
+ params.bFDKWeighting = false;
if (pParProjs) {
if (projData.d->arr)
diff --git a/cuda/3d/par3d_bp.cu b/cuda/3d/par3d_bp.cu
index 3656f78..602f209 100644
--- a/cuda/3d/par3d_bp.cu
+++ b/cuda/3d/par3d_bp.cu
@@ -28,11 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
-#ifdef STANDALONE
-#include "astra/cuda/3d/par3d_fp.h"
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -55,7 +50,13 @@ static const unsigned int g_volBlockY = 32;
static const unsigned g_MaxAngles = 1024;
-__constant__ float gC_C[8*g_MaxAngles];
+struct DevPar3DParams {
+ float4 fNumU;
+ float4 fNumV;
+};
+
+__constant__ DevPar3DParams gC_C[g_MaxAngles];
+__constant__ float gC_scale[g_MaxAngles];
static bool bindProjDataTexture(const cudaArray* array)
@@ -115,8 +116,9 @@ __global__ void dev_par3D_BP(void* D_volData, unsigned int volPitch, int startAn
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
- float4 fCu = make_float4(gC_C[8*angle+0], gC_C[8*angle+1], gC_C[8*angle+2], gC_C[8*angle+3]);
- float4 fCv = make_float4(gC_C[8*angle+4], gC_C[8*angle+5], gC_C[8*angle+6], gC_C[8*angle+7]);
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float fS = gC_scale[angle];
float fU = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z;
float fV = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z;
@@ -124,7 +126,7 @@ __global__ void dev_par3D_BP(void* D_volData, unsigned int volPitch, int startAn
for (int idx = 0; idx < ZSIZE; ++idx) {
float fVal = tex3D(gT_par3DProjTexture, fU, fAngle, fV);
- Z[idx] += fVal;
+ Z[idx] += fVal * fS;
fU += fCu.z;
fV += fCv.z;
@@ -190,14 +192,9 @@ __global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, int star
for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f)
{
- const float fCux = gC_C[8*angle+0];
- const float fCuy = gC_C[8*angle+1];
- const float fCuz = gC_C[8*angle+2];
- const float fCuc = gC_C[8*angle+3];
- const float fCvx = gC_C[8*angle+4];
- const float fCvy = gC_C[8*angle+5];
- const float fCvz = gC_C[8*angle+6];
- const float fCvc = gC_C[8*angle+7];
+ float4 fCu = gC_C[angle].fNumU;
+ float4 fCv = gC_C[angle].fNumV;
+ float fS = gC_scale[angle];
float fXs = fX;
for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) {
@@ -206,10 +203,10 @@ __global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, int star
float fZs = fZ;
for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) {
- const float fU = fCuc + fXs * fCux + fYs * fCuy + fZs * fCuz;
- const float fV = fCvc + fXs * fCvx + fYs * fCvy + fZs * fCvz;
+ const float fU = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z;
+ const float fV = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z;
- fVal += tex3D(gT_par3DProjTexture, fU, fAngle, fV);
+ fVal += tex3D(gT_par3DProjTexture, fU, fAngle, fV) * fS;
fZs += fSubStep;
}
fYs += fSubStep;
@@ -224,6 +221,35 @@ __global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, int star
}
+bool transferConstants(const SPar3DProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params)
+{
+ DevPar3DParams *p = new DevPar3DParams[iProjAngles];
+ float *s = new float[iProjAngles];
+
+ for (unsigned int i = 0; i < iProjAngles; ++i) {
+ Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ);
+ Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ);
+ Vec3 r(angles[i].fRayX, angles[i].fRayY, angles[i].fRayZ);
+ Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ);
+
+ double fDen = det3(r,u,v);
+ p[i].fNumU.x = -det3x(r,v) / fDen;
+ p[i].fNumU.y = -det3y(r,v) / fDen;
+ p[i].fNumU.z = -det3z(r,v) / fDen;
+ p[i].fNumU.w = -det3(r,d,v) / fDen;
+ p[i].fNumV.x = det3x(r,u) / fDen;
+ p[i].fNumV.y = det3y(r,u) / fDen;
+ p[i].fNumV.z = det3z(r,u) / fDen;
+ p[i].fNumV.w = det3(r,d,u) / fDen;
+
+ s[i] = 1.0 / scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm();
+ }
+
+ cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevPar3DParams), 0, cudaMemcpyHostToDevice);
+ cudaMemcpyToSymbol(gC_scale, s, iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
+ return true;
+}
+
bool Par3DBP_Array(cudaPitchedPtr D_volumeData,
cudaArray *D_projArray,
const SDimensions3D& dims, const SPar3DProjection* angles,
@@ -238,33 +264,9 @@ bool Par3DBP_Array(cudaPitchedPtr D_volumeData,
if (th + angleCount > dims.iProjAngles)
angleCount = dims.iProjAngles - th;
- // transfer angles to constant memory
- float* tmp = new float[8*dims.iProjAngles];
-
- // NB: We increment angles at the end of the loop body.
-
-
- // TODO: Use functions from dims3d.cu for this:
-
-#define TRANSFER_TO_CONSTANT(expr,name) do { for (unsigned int i = 0; i < angleCount; ++i) tmp[8*i + name] = (expr) ; } while (0)
-
-#define DENOM (angles[i].fRayX*angles[i].fDetUY*angles[i].fDetVZ - angles[i].fRayX*angles[i].fDetUZ*angles[i].fDetVY - angles[i].fRayY*angles[i].fDetUX*angles[i].fDetVZ + angles[i].fRayY*angles[i].fDetUZ*angles[i].fDetVX + angles[i].fRayZ*angles[i].fDetUX*angles[i].fDetVY - angles[i].fRayZ*angles[i].fDetUY*angles[i].fDetVX)
-
- TRANSFER_TO_CONSTANT( ( - (angles[i].fRayY*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVY)) / DENOM , 0 );
- TRANSFER_TO_CONSTANT( ( (angles[i].fRayX*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVX)) / DENOM , 1 );
- TRANSFER_TO_CONSTANT( (- (angles[i].fRayX*angles[i].fDetVY - angles[i].fRayY*angles[i].fDetVX) ) / DENOM , 2 );
- TRANSFER_TO_CONSTANT( (-(angles[i].fDetSY*angles[i].fDetVZ - angles[i].fDetSZ*angles[i].fDetVY)*angles[i].fRayX + (angles[i].fRayY*angles[i].fDetVZ - angles[i].fRayZ*angles[i].fDetVY)*angles[i].fDetSX - (angles[i].fRayY*angles[i].fDetSZ - angles[i].fRayZ*angles[i].fDetSY)*angles[i].fDetVX) / DENOM , 3 );
-
- TRANSFER_TO_CONSTANT( ((angles[i].fRayY*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUY) ) / DENOM , 4 );
- TRANSFER_TO_CONSTANT( (- (angles[i].fRayX*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUX) ) / DENOM , 5 );
- TRANSFER_TO_CONSTANT( ((angles[i].fRayX*angles[i].fDetUY - angles[i].fRayY*angles[i].fDetUX) ) / DENOM , 6 );
- TRANSFER_TO_CONSTANT( ((angles[i].fDetSY*angles[i].fDetUZ - angles[i].fDetSZ*angles[i].fDetUY)*angles[i].fRayX - (angles[i].fRayY*angles[i].fDetUZ - angles[i].fRayZ*angles[i].fDetUY)*angles[i].fDetSX + (angles[i].fRayY*angles[i].fDetSZ - angles[i].fRayZ*angles[i].fDetSY)*angles[i].fDetUX ) / DENOM , 7 );
-
-#undef TRANSFER_TO_CONSTANT
-#undef DENOM
- cudaMemcpyToSymbol(gC_C, tmp, angleCount*8*sizeof(float), 0, cudaMemcpyHostToDevice);
-
- delete[] tmp;
+ bool ok = transferConstants(angles, dims.iProjAngles, params);
+ if (!ok)
+ return false;
dim3 dimBlock(g_volBlockX, g_volBlockY);
@@ -310,161 +312,3 @@ bool Par3DBP(cudaPitchedPtr D_volumeData,
}
-
-#ifdef STANDALONE
-int main()
-{
- SDimensions3D dims;
- dims.iVolX = 256;
- dims.iVolY = 256;
- dims.iVolZ = 256;
- dims.iProjAngles = 180;
- dims.iProjU = 512;
- dims.iProjV = 512;
- dims.iRaysPerDet = 1;
-
- cudaExtent extentV;
- extentV.width = dims.iVolX*sizeof(float);
- extentV.height = dims.iVolY;
- extentV.depth = dims.iVolZ;
-
- cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&volData, extentV);
-
- cudaExtent extentP;
- extentP.width = dims.iProjU*sizeof(float);
- extentP.height = dims.iProjAngles;
- extentP.depth = dims.iProjV;
-
- cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
-
- cudaMalloc3D(&projData, extentP);
- cudaMemset3D(projData, 0, extentP);
-
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 1.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
-#if 0
- if (i == 128) {
- for (unsigned int j = 0; j < 256*256; ++j)
- slice[j] = 0.0f;
- }
-#endif
- }
-
-
- SPar3DProjection angle[180];
- angle[0].fRayX = 1;
- angle[0].fRayY = 0;
- angle[0].fRayZ = 0;
-
- angle[0].fDetSX = 512;
- angle[0].fDetSY = -256;
- angle[0].fDetSZ = -256;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = 1;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = 1;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 180; ++i) {
- angle[i] = angle[0];
- ROTATE0(Ray, i, i*2*M_PI/180);
- ROTATE0(DetS, i, i*2*M_PI/180);
- ROTATE0(DetU, i, i*2*M_PI/180);
- ROTATE0(DetV, i, i*2*M_PI/180);
- }
-#undef ROTATE0
-
- astraCUDA3d::Par3DFP(volData, projData, dims, angle, 1.0f);
-#if 1
- float* bufs = new float[180*512];
-
- for (int i = 0; i < 512; ++i) {
- cudaMemcpy(bufs, ((float*)projData.ptr)+180*512*i, 180*512*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
-
- char fname[20];
- sprintf(fname, "sino%03d.png", i);
- saveImage(fname, 180, 512, bufs, 0, 512);
- }
-
- float* bufp = new float[512*512];
-
- for (int i = 0; i < 180; ++i) {
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
- }
-
- char fname[20];
- sprintf(fname, "proj%03d.png", i);
- saveImage(fname, 512, 512, bufp, 0, 512);
- }
-#endif
- for (unsigned int i = 0; i < 256*256; ++i)
- slice[i] = 0.0f;
- for (unsigned int i = 0; i < 256; ++i) {
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
- }
-
- astraCUDA3d::Par3DBP(volData, projData, dims, angle, 1.0f);
-#if 1
- float* buf = new float[256*256];
-
- for (int i = 0; i < 256; ++i) {
- cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", volData.pitch, volData.xsize, volData.ysize);
-
- char fname[20];
- sprintf(fname, "vol%03d.png", i);
- saveImage(fname, 256, 256, buf, 0, 60000);
- }
-#endif
-
-}
-#endif
diff --git a/cuda/3d/par3d_fp.cu b/cuda/3d/par3d_fp.cu
index 515b1ba..0a4a5cc 100644
--- a/cuda/3d/par3d_fp.cu
+++ b/cuda/3d/par3d_fp.cu
@@ -28,11 +28,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
-
#include <cstdio>
#include <cassert>
#include <iostream>
@@ -751,166 +746,3 @@ bool Par3DFP_SumSqW(cudaPitchedPtr D_volumeData,
}
-
-#ifdef STANDALONE
-
-using namespace astraCUDA3d;
-
-int main()
-{
- cudaSetDevice(1);
-
-
- SDimensions3D dims;
- dims.iVolX = 500;
- dims.iVolY = 500;
- dims.iVolZ = 81;
- dims.iProjAngles = 241;
- dims.iProjU = 600;
- dims.iProjV = 100;
- dims.iRaysPerDet = 1;
-
- SPar3DProjection base;
- base.fRayX = 1.0f;
- base.fRayY = 0.0f;
- base.fRayZ = 0.1f;
-
- base.fDetSX = 0.0f;
- base.fDetSY = -300.0f;
- base.fDetSZ = -50.0f;
-
- base.fDetUX = 0.0f;
- base.fDetUY = 1.0f;
- base.fDetUZ = 0.0f;
-
- base.fDetVX = 0.0f;
- base.fDetVY = 0.0f;
- base.fDetVZ = 1.0f;
-
- SPar3DProjection angle[dims.iProjAngles];
-
- cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
-
- volData = allocateVolumeData(dims);
-
- cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
-
- projData = allocateProjectionData(dims);
-
- unsigned int ix = 500,iy = 500;
-
- float* buf = new float[dims.iProjU*dims.iProjV];
-
- float* slice = new float[dims.iVolX*dims.iVolY];
- for (int i = 0; i < dims.iVolX*dims.iVolY; ++i)
- slice[i] = 1.0f;
-
- for (unsigned int a = 0; a < 241; a += dims.iProjAngles) {
-
- zeroProjectionData(projData, dims);
-
- for (int y = 0; y < iy; y += dims.iVolY) {
- for (int x = 0; x < ix; x += dims.iVolX) {
-
- timeval st;
- tic(st);
-
- for (int z = 0; z < dims.iVolZ; ++z) {
-// char sfn[256];
-// sprintf(sfn, "/home/wpalenst/projects/cone_simulation/phantom_4096/mouse_fem_phantom_%04d.png", 30+z);
-// float* slice = loadSubImage(sfn, x, y, dims.iVolX, dims.iVolY);
-
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = dims.iVolX*sizeof(float);
- ptr.xsize = dims.iVolX*sizeof(float);
- ptr.ysize = dims.iVolY;
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
-
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, z };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaError err = cudaMemcpy3D(&p);
- assert(!err);
-// delete[] slice;
- }
-
- printf("Load: %f\n", toc(st));
-
-#if 0
-
- cudaPos zp = { 0, 0, 0 };
-
- cudaPitchedPtr t;
- t.ptr = new float[1024*1024];
- t.pitch = 1024*4;
- t.xsize = 1024*4;
- t.ysize = 1024;
-
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = zp;
- p.srcPtr = volData;
- p.extent = extentS;
- p.dstArray = 0;
- p.dstPtr = t;
- p.dstPos = zp;
- p.kind = cudaMemcpyDeviceToHost;
- cudaError err = cudaMemcpy3D(&p);
- assert(!err);
-
- char fn[32];
- sprintf(fn, "t%d%d.png", x / dims.iVolX, y / dims.iVolY);
- saveImage(fn, 1024, 1024, (float*)t.ptr);
- saveImage("s.png", 4096, 4096, slice);
- delete[] (float*)t.ptr;
-#endif
-
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = base.f##name##X * cos(alpha) - base.f##name##Y * sin(alpha); angle[i].f##name##Y = base.f##name##X * sin(alpha) + base.f##name##Y * cos(alpha); angle[i].f##name##Z = base.f##name##Z; } while(0)
-#define SHIFT(name,i,x,y) do { angle[i].f##name##X += x; angle[i].f##name##Y += y; } while(0)
- for (int i = 0; i < dims.iProjAngles; ++i) {
- ROTATE0(Ray, i, (a+i)*.8*M_PI/180);
- ROTATE0(DetS, i, (a+i)*.8*M_PI/180);
- ROTATE0(DetU, i, (a+i)*.8*M_PI/180);
- ROTATE0(DetV, i, (a+i)*.8*M_PI/180);
-
-
-// SHIFT(Src, i, (-x+1536), (-y+1536));
-// SHIFT(DetS, i, (-x+1536), (-y+1536));
- }
-#undef ROTATE0
-#undef SHIFT
- tic(st);
-
- astraCUDA3d::Par3DFP(volData, projData, dims, angle, 1.0f);
-
- printf("FP: %f\n", toc(st));
-
- }
- }
- for (unsigned int aa = 0; aa < dims.iProjAngles; ++aa) {
- for (unsigned int v = 0; v < dims.iProjV; ++v)
- cudaMemcpy(buf+v*dims.iProjU, ((float*)projData.ptr)+(v*dims.iProjAngles+aa)*(projData.pitch/sizeof(float)), dims.iProjU*sizeof(float), cudaMemcpyDeviceToHost);
-
- char fname[32];
- sprintf(fname, "proj%03d.png", a+aa);
- saveImage(fname, dims.iProjV, dims.iProjU, buf, 0.0f, 1000.0f);
- }
- }
-
- delete[] buf;
-
-}
-#endif
diff --git a/cuda/3d/sirt3d.cu b/cuda/3d/sirt3d.cu
index 869b2fd..e68bde8 100644
--- a/cuda/3d/sirt3d.cu
+++ b/cuda/3d/sirt3d.cu
@@ -30,10 +30,6 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/cuda/3d/arith3d.h"
#include "astra/cuda/3d/cone_fp.h"
-#ifdef STANDALONE
-#include "testutil.h"
-#endif
-
#include <cstdio>
#include <cassert>
@@ -375,160 +371,3 @@ bool doSIRT(cudaPitchedPtr& D_volumeData,
}
-#ifdef STANDALONE
-
-using namespace astraCUDA3d;
-
-int main()
-{
- SDimensions3D dims;
- dims.iVolX = 256;
- dims.iVolY = 256;
- dims.iVolZ = 256;
- dims.iProjAngles = 100;
- dims.iProjU = 512;
- dims.iProjV = 512;
- dims.iRaysPerDet = 1;
-
- SConeProjection angle[100];
- angle[0].fSrcX = -2905.6;
- angle[0].fSrcY = 0;
- angle[0].fSrcZ = 0;
-
- angle[0].fDetSX = 694.4;
- angle[0].fDetSY = -122.4704;
- angle[0].fDetSZ = -122.4704;
-
- angle[0].fDetUX = 0;
- angle[0].fDetUY = .4784;
- //angle[0].fDetUY = .5;
- angle[0].fDetUZ = 0;
-
- angle[0].fDetVX = 0;
- angle[0].fDetVY = 0;
- angle[0].fDetVZ = .4784;
-
-#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
- for (int i = 1; i < 100; ++i) {
- angle[i] = angle[0];
- ROTATE0(Src, i, i*2*M_PI/100);
- ROTATE0(DetS, i, i*2*M_PI/100);
- ROTATE0(DetU, i, i*2*M_PI/100);
- ROTATE0(DetV, i, i*2*M_PI/100);
- }
-#undef ROTATE0
-
-
- cudaPitchedPtr volData = allocateVolumeData(dims);
- cudaPitchedPtr projData = allocateProjectionData(dims);
- zeroProjectionData(projData, dims);
-
- float* pbuf = new float[100*512*512];
- copyProjectionsFromDevice(pbuf, projData, dims);
- copyProjectionsToDevice(pbuf, projData, dims);
- delete[] pbuf;
-
-#if 0
- float* slice = new float[256*256];
- cudaPitchedPtr ptr;
- ptr.ptr = slice;
- ptr.pitch = 256*sizeof(float);
- ptr.xsize = 256*sizeof(float);
- ptr.ysize = 256;
-
- for (unsigned int i = 0; i < 256; ++i) {
- for (unsigned int y = 0; y < 256; ++y)
- for (unsigned int x = 0; x < 256; ++x)
- slice[y*256+x] = (i-127.5)*(i-127.5)+(y-127.5)*(y-127.5)+(x-127.5)*(x-127.5) < 4900 ? 1.0f : 0.0f;
-
- cudaExtent extentS;
- extentS.width = dims.iVolX*sizeof(float);
- extentS.height = dims.iVolY;
- extentS.depth = 1;
- cudaPos sp = { 0, 0, 0 };
- cudaPos dp = { 0, 0, i };
- cudaMemcpy3DParms p;
- p.srcArray = 0;
- p.srcPos = sp;
- p.srcPtr = ptr;
- p.dstArray = 0;
- p.dstPos = dp;
- p.dstPtr = volData;
- p.extent = extentS;
- p.kind = cudaMemcpyHostToDevice;
- cudaMemcpy3D(&p);
- }
- astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
-
-#else
-
- for (int i = 0; i < 100; ++i) {
- char fname[32];
- sprintf(fname, "Tiffs/%04d.png", 4*i);
- unsigned int w,h;
- float* bufp = loadImage(fname, w,h);
-
- for (int j = 0; j < 512*512; ++j) {
- float v = bufp[j];
- if (v > 236.0f) v = 236.0f;
- v = logf(236.0f / v);
- bufp[j] = 256*v;
- }
-
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(((float*)projData.ptr)+100*512*j+512*i, bufp+512*j, 512*sizeof(float), cudaMemcpyHostToDevice);
- }
-
- delete[] bufp;
-
- }
-#endif
-
-#if 0
- float* bufs = new float[100*512];
-
- for (int i = 0; i < 512; ++i) {
- cudaMemcpy(bufs, ((float*)projData.ptr)+100*512*i, 100*512*sizeof(float), cudaMemcpyDeviceToHost);
-
- printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
-
- char fname[20];
- sprintf(fname, "sino%03d.png", i);
- saveImage(fname, 100, 512, bufs);
- }
-
- float* bufp = new float[512*512];
-
- for (int i = 0; i < 100; ++i) {
- for (int j = 0; j < 512; ++j) {
- cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
- }
-
- char fname[20];
- sprintf(fname, "proj%03d.png", i);
- saveImage(fname, 512, 512, bufp);
- }
-#endif
-
- zeroVolumeData(volData, dims);
-
- cudaPitchedPtr maskData;
- maskData.ptr = 0;
-
- astraCUDA3d::doSIRT(volData, projData, maskData, dims, angle, 50);
-#if 1
- float* buf = new float[256*256];
-
- for (int i = 0; i < 256; ++i) {
- cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
-
- char fname[20];
- sprintf(fname, "vol%03d.png", i);
- saveImage(fname, 256, 256, buf);
- }
-#endif
-
- return 0;
-}
-#endif
-
diff --git a/include/astra/CudaProjector3D.h b/include/astra/CudaProjector3D.h
index 60df7bb..9b4ff1f 100644
--- a/include/astra/CudaProjector3D.h
+++ b/include/astra/CudaProjector3D.h
@@ -117,7 +117,6 @@ public:
int getVoxelSuperSampling() const { return m_iVoxelSuperSampling; }
int getDetectorSuperSampling() const { return m_iDetectorSuperSampling; }
int getGPUIndex() const { return m_iGPUIndex; }
- bool getDensityWeighting() const { return m_bDensityWeighting; }
protected:
@@ -125,7 +124,6 @@ protected:
int m_iVoxelSuperSampling;
int m_iDetectorSuperSampling;
int m_iGPUIndex;
- bool m_bDensityWeighting;
};
diff --git a/include/astra/FanFlatBeamLineKernelProjector2D.inl b/include/astra/FanFlatBeamLineKernelProjector2D.inl
index 58dec61..8f2e673 100644
--- a/include/astra/FanFlatBeamLineKernelProjector2D.inl
+++ b/include/astra/FanFlatBeamLineKernelProjector2D.inl
@@ -82,8 +82,6 @@ void CFanFlatBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, in
const SFanProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
- float32 detSize = sqrt(proj->fDetUX * proj->fDetUX + proj->fDetUY * proj->fDetUY);
-
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
@@ -104,7 +102,7 @@ void CFanFlatBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, in
// vertically
if (vertical) {
RxOverRy = Rx/Ry;
- lengthPerRow = detSize * pixelLengthX * sqrt(Rx*Rx + Ry*Ry) / abs(Ry);
+ lengthPerRow = pixelLengthX * sqrt(Rx*Rx + Ry*Ry) / abs(Ry);
deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
S = 0.5f - 0.5f*fabs(RxOverRy);
T = 0.5f + 0.5f*fabs(RxOverRy);
@@ -154,7 +152,7 @@ void CFanFlatBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, in
// horizontally
else {
RyOverRx = Ry/Rx;
- lengthPerCol = detSize * pixelLengthY * sqrt(Rx*Rx + Ry*Ry) / abs(Rx);
+ lengthPerCol = pixelLengthY * sqrt(Rx*Rx + Ry*Ry) / abs(Rx);
deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
S = 0.5f - 0.5f*fabs(RyOverRx);
T = 0.5f + 0.5f*fabs(RyOverRx);
diff --git a/include/astra/FanFlatBeamStripKernelProjector2D.inl b/include/astra/FanFlatBeamStripKernelProjector2D.inl
index 889d0a3..f5a688c 100644
--- a/include/astra/FanFlatBeamStripKernelProjector2D.inl
+++ b/include/astra/FanFlatBeamStripKernelProjector2D.inl
@@ -109,8 +109,12 @@ void CFanFlatBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, i
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
- float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() +
- (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
+ float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
+ dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW);
+
+
+
+ //float32 InvRayWidthSquared = (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance()) / dist_srcDetPixSquared;
float32 sin_theta_left, cos_theta_left;
float32 sin_theta_right, cos_theta_right;
@@ -257,8 +261,8 @@ void CFanFlatBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, i
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
- float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() +
- (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
+ float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW;
+ dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW);
// get theta_l = alpha_left + theta and theta_r = alpha_right + theta
float32 sin_theta_left, cos_theta_left;
diff --git a/include/astra/Features.h b/include/astra/Features.h
index d88ae71..c7ef98c 100644
--- a/include/astra/Features.h
+++ b/include/astra/Features.h
@@ -38,10 +38,22 @@ _AstraExport bool hasFeature(const std::string &feature);
FEATURES:
-cuda: is cuda support compiled in?
+cuda
+ is cuda support compiled in?
NB: To check if there is also actually a usable GPU, use cudaAvailable()
-mex_link: is there support for the matlab command astra_mex_data3d('link')?
+mex_link
+ is there support for the matlab command astra_mex_data3d('link')?
+
+projectors_scaled_as_line_integrals
+ This is set since all 2D and 3D, CPU and GPU projectors scale their outputs
+ to approximate line integrals. (Previously, some 2D projectors were scaled
+ as area integrals.)
+
+fan_cone_BP_density_weighting_by_default
+ This is set since fan beam and cone beam BP operations perform ray density
+ weighting by default to more closely approximate the true mathematical adjoint.
+ The DensityWeighting cuda3d projector option is removed.
For future backward-incompatible changes, extra features will be added here
diff --git a/include/astra/ParallelBeamDistanceDrivenProjector2D.inl b/include/astra/ParallelBeamDistanceDrivenProjector2D.inl
index aedcee9..3a18c6f 100644
--- a/include/astra/ParallelBeamDistanceDrivenProjector2D.inl
+++ b/include/astra/ParallelBeamDistanceDrivenProjector2D.inl
@@ -72,7 +72,7 @@ void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFro
const int rowCount = m_pVolumeGeometry->getGridRowCount();
// Performance note:
- // This is not a very well optimizated version of the distance driven
+ // This is not a very well optimized version of the distance driven
// projector. The CPU projector model in ASTRA requires ray-driven iteration,
// which limits re-use of intermediate computations.
@@ -86,6 +86,9 @@ void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFro
const float32 Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f;
const float32 Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f;
+ const float32 rayWidth = fabs(proj->fDetUX * proj->fRayY - proj->fDetUY * proj->fRayX) /
+ sqrt(proj->fRayX * proj->fRayX + proj->fRayY * proj->fRayY);
+
// loop detectors
for (int iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
@@ -100,7 +103,7 @@ void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFro
if (vertical) {
const float32 RxOverRy = proj->fRayX/proj->fRayY;
- const float32 lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY();
+ const float32 lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY() / rayWidth;
const float32 deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
const float32 deltad = 0.5f * fabs((proj->fDetUX - proj->fDetUY * RxOverRy) * inv_pixelLengthX);
@@ -157,7 +160,7 @@ void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFro
} else {
const float32 RyOverRx = proj->fRayY/proj->fRayX;
- const float32 lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY();
+ const float32 lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY() / rayWidth;
const float32 deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
const float32 deltad = 0.5f * fabs((proj->fDetUY - proj->fDetUX * RyOverRx) * inv_pixelLengthY);
diff --git a/include/astra/ParallelBeamLineKernelProjector2D.inl b/include/astra/ParallelBeamLineKernelProjector2D.inl
index a9f1aa0..903ebb6 100644
--- a/include/astra/ParallelBeamLineKernelProjector2D.inl
+++ b/include/astra/ParallelBeamLineKernelProjector2D.inl
@@ -166,24 +166,7 @@ void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, i
const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
- float32 detSize = sqrt(proj->fDetUX * proj->fDetUX + proj->fDetUY * proj->fDetUY);
-
bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
- if (vertical) {
- RxOverRy = proj->fRayX/proj->fRayY;
- lengthPerRow = detSize * pixelLengthX * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY);
- deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
- S = 0.5f - 0.5f*fabs(RxOverRy);
- T = 0.5f + 0.5f*fabs(RxOverRy);
- invTminSTimesLengthPerRow = lengthPerRow / (T - S);
- } else {
- RyOverRx = proj->fRayY/proj->fRayX;
- lengthPerCol = detSize * pixelLengthY * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX);
- deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
- S = 0.5f - 0.5f*fabs(RyOverRx);
- T = 0.5f + 0.5f*fabs(RyOverRx);
- invTminSTimesLengthPerCol = lengthPerCol / (T - S);
- }
Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f;
Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f;
@@ -204,6 +187,13 @@ void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, i
// vertically
if (vertical) {
+ RxOverRy = proj->fRayX/proj->fRayY;
+ lengthPerRow = pixelLengthX * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY);
+ deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
+ S = 0.5f - 0.5f*fabs(RxOverRy);
+ T = 0.5f + 0.5f*fabs(RxOverRy);
+ invTminSTimesLengthPerRow = lengthPerRow / (T - S);
+
// calculate c for row 0
c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX;
@@ -248,6 +238,13 @@ void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, i
// horizontally
else {
+ RyOverRx = proj->fRayY/proj->fRayX;
+ lengthPerCol = pixelLengthY * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX);
+ deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
+ S = 0.5f - 0.5f*fabs(RyOverRx);
+ T = 0.5f + 0.5f*fabs(RyOverRx);
+ invTminSTimesLengthPerCol = lengthPerCol / (T - S);
+
// calculate r for col 0
r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY;
diff --git a/include/astra/ParallelBeamLinearKernelProjector2D.inl b/include/astra/ParallelBeamLinearKernelProjector2D.inl
index 10d4892..53451e5 100644
--- a/include/astra/ParallelBeamLinearKernelProjector2D.inl
+++ b/include/astra/ParallelBeamLinearKernelProjector2D.inl
@@ -154,18 +154,7 @@ void CParallelBeamLinearKernelProjector2D::projectBlock_internal(int _iProjFrom,
const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
- float32 detSize = sqrt(proj->fDetUX * proj->fDetUX + proj->fDetUY * proj->fDetUY);
-
const bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
- if (vertical) {
- RxOverRy = proj->fRayX/proj->fRayY;
- lengthPerRow = detSize * m_pVolumeGeometry->getPixelLengthX() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY);
- deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
- } else {
- RyOverRx = proj->fRayY/proj->fRayX;
- lengthPerCol = detSize * m_pVolumeGeometry->getPixelLengthY() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX);
- deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
- }
Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f;
Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f;
@@ -186,6 +175,10 @@ void CParallelBeamLinearKernelProjector2D::projectBlock_internal(int _iProjFrom,
// vertically
if (vertical) {
+ RxOverRy = proj->fRayX/proj->fRayY;
+ lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY);
+ deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
+
// calculate c for row 0
c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX;
@@ -209,6 +202,10 @@ void CParallelBeamLinearKernelProjector2D::projectBlock_internal(int _iProjFrom,
// horizontally
else {
+ RyOverRx = proj->fRayY/proj->fRayX;
+ lengthPerCol = m_pVolumeGeometry->getPixelLengthY() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX);
+ deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
+
// calculate r for col 0
r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY;
diff --git a/include/astra/ParallelBeamStripKernelProjector2D.inl b/include/astra/ParallelBeamStripKernelProjector2D.inl
index 0d775b3..2031560 100644
--- a/include/astra/ParallelBeamStripKernelProjector2D.inl
+++ b/include/astra/ParallelBeamStripKernelProjector2D.inl
@@ -142,20 +142,11 @@ void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom,
const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
+ const float32 rayWidth = fabs(proj->fDetUX * proj->fRayY - proj->fDetUY * proj->fRayX) /
+ sqrt(proj->fRayX * proj->fRayX + proj->fRayY * proj->fRayY);
+ const float32 relPixelArea = pixelArea / rayWidth;
+
bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
- if (vertical) {
- RxOverRy = proj->fRayX/proj->fRayY;
- deltac = -m_pVolumeGeometry->getPixelLengthY() * RxOverRy * inv_pixelLengthX;
- S = 0.5f - 0.5f*fabs(RxOverRy);
- T = 0.5f + 0.5f*fabs(RxOverRy);
- invTminS = 1.0f / (T-S);
- } else {
- RyOverRx = proj->fRayY/proj->fRayX;
- deltar = -m_pVolumeGeometry->getPixelLengthX() * RyOverRx * inv_pixelLengthY;
- S = 0.5f - 0.5f*fabs(RyOverRx);
- T = 0.5f + 0.5f*fabs(RyOverRx);
- invTminS = 1.0f / (T-S);
- }
Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f;
Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f;
@@ -176,6 +167,12 @@ void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom,
// vertically
if (vertical) {
+ RxOverRy = proj->fRayX/proj->fRayY;
+ deltac = -m_pVolumeGeometry->getPixelLengthY() * RxOverRy * inv_pixelLengthX;
+ S = 0.5f - 0.5f*fabs(RxOverRy);
+ T = 0.5f + 0.5f*fabs(RxOverRy);
+ invTminS = 1.0f / (T-S);
+
// calculate cL and cR for row 0
cL = (DLx + (Ey - DLy)*RxOverRy - Ex) * inv_pixelLengthX;
cR = (DRx + (Ey - DRy)*RxOverRy - Ex) * inv_pixelLengthX;
@@ -219,7 +216,7 @@ void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom,
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
- p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
+ p.addWeight(iRayIndex, iVolumeIndex, relPixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
@@ -229,6 +226,12 @@ void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom,
// horizontally
else {
+ RyOverRx = proj->fRayY/proj->fRayX;
+ deltar = -m_pVolumeGeometry->getPixelLengthX() * RyOverRx * inv_pixelLengthY;
+ S = 0.5f - 0.5f*fabs(RyOverRx);
+ T = 0.5f + 0.5f*fabs(RyOverRx);
+ invTminS = 1.0f / (T-S);
+
// calculate rL and rR for row 0
rL = -(DLy + (Ex - DLx)*RyOverRx - Ey) * inv_pixelLengthY;
rR = -(DRy + (Ex - DRx)*RyOverRx - Ey) * inv_pixelLengthY;
@@ -272,7 +275,7 @@ void CParallelBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom,
else if (-S < offsetL) res -= 0.5f + offsetL;
else if (-T < offsetL) res -= 0.5f*(offsetL+T)*(offsetL+T)*invTminS;
- p.addWeight(iRayIndex, iVolumeIndex, pixelArea*res);
+ p.addWeight(iRayIndex, iVolumeIndex, relPixelArea*res);
p.pixelPosterior(iVolumeIndex);
}
}
diff --git a/include/astra/cuda/2d/algo.h b/include/astra/cuda/2d/algo.h
index 3fccdef..b670b8b 100644
--- a/include/astra/cuda/2d/algo.h
+++ b/include/astra/cuda/2d/algo.h
@@ -56,6 +56,10 @@ public:
bool setSuperSampling(int raysPerDet, int raysPerPixelDim);
+ // Scale the final reconstruction.
+ // May be called at any time after setGeometry and before iterate(). Multiple calls stack.
+ bool setReconstructionScale(float fScale);
+
virtual bool enableVolumeMask();
virtual bool enableSinogramMask();
@@ -88,8 +92,7 @@ public:
// sinogram, reconstruction, volume mask and sinogram mask in system RAM,
// respectively. The corresponding pitch variables give the pitches
// of these buffers, measured in floats.
- // The sinogram is multiplied by fSinogramScale after uploading it.
- virtual bool copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch, float fSinogramScale,
+ virtual bool copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch,
const float* pfReconstruction, unsigned int iReconstructionPitch,
const float* pfVolMask, unsigned int iVolMaskPitch,
const float* pfSinoMask, unsigned int iSinoMaskPitch);
@@ -133,7 +136,7 @@ protected:
SDimensions dims;
SParProjection* parProjs;
SFanProjection* fanProjs;
- float fOutputScale;
+ float fProjectorScale;
bool freeGPUMemory;
diff --git a/include/astra/cuda/2d/cgls.h b/include/astra/cuda/2d/cgls.h
index 375a425..a854a74 100644
--- a/include/astra/cuda/2d/cgls.h
+++ b/include/astra/cuda/2d/cgls.h
@@ -47,7 +47,7 @@ public:
virtual bool setBuffers(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch);
- virtual bool copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch, float fSinogramScale,
+ virtual bool copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch,
const float* pfReconstruction, unsigned int iReconstructionPitch,
const float* pfVolMask, unsigned int iVolMaskPitch,
const float* pfSinoMask, unsigned int iSinoMaskPitch);
diff --git a/include/astra/cuda/2d/fbp.h b/include/astra/cuda/2d/fbp.h
index 1adf3b1..3aa4741 100644
--- a/include/astra/cuda/2d/fbp.h
+++ b/include/astra/cuda/2d/fbp.h
@@ -79,6 +79,11 @@ public:
bool setShortScan(bool ss) { m_bShortScan = ss; return true; }
+ // Scale the final reconstruction.
+ // May be called at any time before iterate().
+ bool setReconstructionScale(float fScale);
+
+
virtual bool init();
virtual bool iterate(unsigned int iterations);
@@ -90,6 +95,7 @@ protected:
void* D_filter; // cufftComplex*
bool m_bShortScan;
+ float fReconstructionScale;
};
}
diff --git a/include/astra/cuda/3d/fdk.h b/include/astra/cuda/3d/fdk.h
index 3b1a9e1..6817154 100644
--- a/include/astra/cuda/3d/fdk.h
+++ b/include/astra/cuda/3d/fdk.h
@@ -35,7 +35,7 @@ namespace astraCUDA3d {
bool FDK_PreWeight(cudaPitchedPtr D_projData,
float fSrcOrigin, float fDetOrigin,
float fZShift,
- float fDetUSize, float fDetVSize, float fVoxSize,
+ float fDetUSize, float fDetVSize,
bool bShortScan,
const SDimensions3D& dims, const float* angles);
diff --git a/include/astra/cuda/3d/mem3d.h b/include/astra/cuda/3d/mem3d.h
index 8c3956e..fff1490 100644
--- a/include/astra/cuda/3d/mem3d.h
+++ b/include/astra/cuda/3d/mem3d.h
@@ -110,7 +110,7 @@ bool copyIntoArray(MemHandle3D handle, MemHandle3D subdata, const SSubDimensions
bool FP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iDetectorSuperSampling, astra::Cuda3DProjectionKernel projKernel);
-bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iVoxelSuperSampling, bool bFDKWeighting);
+bool BP(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, int iVoxelSuperSampling);
bool FDK(const astra::CProjectionGeometry3D* pProjGeom, MemHandle3D projData, const astra::CVolumeGeometry3D* pVolGeom, MemHandle3D volData, bool bShortScan, const float *pfFilter = 0);
diff --git a/include/astra/cuda/3d/util3d.h b/include/astra/cuda/3d/util3d.h
index 0146d2d..200abfc 100644
--- a/include/astra/cuda/3d/util3d.h
+++ b/include/astra/cuda/3d/util3d.h
@@ -64,6 +64,53 @@ float dotProduct3D(cudaPitchedPtr data, unsigned int x, unsigned int y, unsigned
int calcNextPowerOfTwo(int _iValue);
+struct Vec3 {
+ double x;
+ double y;
+ double z;
+ Vec3(double x_, double y_, double z_) : x(x_), y(y_), z(z_) { }
+ Vec3 operator+(const Vec3 &b) const {
+ return Vec3(x + b.x, y + b.y, z + b.z);
+ }
+ Vec3 operator-(const Vec3 &b) const {
+ return Vec3(x - b.x, y - b.y, z - b.z);
+ }
+ Vec3 operator-() const {
+ return Vec3(-x, -y, -z);
+ }
+ double norm() const {
+ return sqrt(x*x + y*y + z*z);
+ }
+};
+
+static double det3x(const Vec3 &b, const Vec3 &c) {
+ return (b.y * c.z - b.z * c.y);
+}
+static double det3y(const Vec3 &b, const Vec3 &c) {
+ return -(b.x * c.z - b.z * c.x);
+}
+
+static double det3z(const Vec3 &b, const Vec3 &c) {
+ return (b.x * c.y - b.y * c.x);
+}
+
+static double det3(const Vec3 &a, const Vec3 &b, const Vec3 &c) {
+ return a.x * det3x(b,c) + a.y * det3y(b,c) + a.z * det3z(b,c);
+}
+
+static Vec3 cross3(const Vec3 &a, const Vec3 &b) {
+ return Vec3(det3x(a,b), det3y(a,b), det3z(a,b));
+}
+
+static Vec3 scaled_cross3(const Vec3 &a, const Vec3 &b, const Vec3 &sc) {
+ Vec3 ret = cross3(a, b);
+ ret.x *= sc.y * sc.z;
+ ret.y *= sc.x * sc.z;
+ ret.z *= sc.x * sc.y;
+ return ret;
+}
+
+
}
#endif
diff --git a/src/CompositeGeometryManager.cpp b/src/CompositeGeometryManager.cpp
index 1319a87..822f746 100644
--- a/src/CompositeGeometryManager.cpp
+++ b/src/CompositeGeometryManager.cpp
@@ -1462,12 +1462,10 @@ static bool doJob(const CCompositeGeometryManager::TJobSet::const_iterator& iter
Cuda3DProjectionKernel projKernel = ker3d_default;
int detectorSuperSampling = 1;
int voxelSuperSampling = 1;
- bool densityWeighting = false;
if (projector) {
projKernel = projector->getProjectionKernel();
detectorSuperSampling = projector->getDetectorSuperSampling();
voxelSuperSampling = projector->getVoxelSuperSampling();
- densityWeighting = projector->getDensityWeighting();
}
size_t inx, iny, inz;
@@ -1513,7 +1511,7 @@ static bool doJob(const CCompositeGeometryManager::TJobSet::const_iterator& iter
ASTRA_DEBUG("CCompositeGeometryManager::doJobs: doing BP");
- ok = astraCUDA3d::BP(((CCompositeGeometryManager::CProjectionPart*)j.pInput.get())->pGeom, srcMem->hnd, ((CCompositeGeometryManager::CVolumePart*)j.pOutput.get())->pGeom, dstMem->hnd, voxelSuperSampling, densityWeighting);
+ ok = astraCUDA3d::BP(((CCompositeGeometryManager::CProjectionPart*)j.pInput.get())->pGeom, srcMem->hnd, ((CCompositeGeometryManager::CVolumePart*)j.pOutput.get())->pGeom, dstMem->hnd, voxelSuperSampling);
if (!ok) ASTRA_ERROR("Error performing sub-BP");
ASTRA_DEBUG("CCompositeGeometryManager::doJobs: BP done");
}
diff --git a/src/CudaFilteredBackProjectionAlgorithm.cpp b/src/CudaFilteredBackProjectionAlgorithm.cpp
index 88e235b..c1d3dc8 100644
--- a/src/CudaFilteredBackProjectionAlgorithm.cpp
+++ b/src/CudaFilteredBackProjectionAlgorithm.cpp
@@ -151,6 +151,13 @@ void CCudaFilteredBackProjectionAlgorithm::initCUDAAlgorithm()
if (!ok) {
ASTRA_ERROR("CCudaFilteredBackProjectionAlgorithm: Failed to set short-scan mode");
}
+
+ const CVolumeGeometry2D& volGeom = *m_pReconstruction->getGeometry();
+ float fPixelArea = volGeom.getPixelArea();
+ ok &= pFBP->setReconstructionScale(1.0f/fPixelArea);
+ if (!ok) {
+ ASTRA_ERROR("CCudaFilteredBackProjectionAlgorithm: Failed to set reconstruction scale");
+ }
}
diff --git a/src/CudaProjector3D.cpp b/src/CudaProjector3D.cpp
index 3ea7043..e5c55cc 100644
--- a/src/CudaProjector3D.cpp
+++ b/src/CudaProjector3D.cpp
@@ -67,7 +67,6 @@ void CCudaProjector3D::_clear()
m_iVoxelSuperSampling = 1;
m_iDetectorSuperSampling = 1;
m_iGPUIndex = -1;
- m_bDensityWeighting = false;
}
//----------------------------------------------------------------------------------------
@@ -132,13 +131,6 @@ bool CCudaProjector3D::initialize(const Config& _cfg)
m_iDetectorSuperSampling = (int)_cfg.self.getOptionNumerical("DetectorSuperSampling", 1);
CC.markOptionParsed("DetectorSuperSampling");
- if (dynamic_cast<CConeProjectionGeometry3D*>(m_pProjectionGeometry) ||
- dynamic_cast<CConeVecProjectionGeometry3D*>(m_pProjectionGeometry))
- {
- m_bDensityWeighting = _cfg.self.getOptionBool("DensityWeighting", false);
- CC.markOptionParsed("DensityWeighting");
- }
-
m_iGPUIndex = (int)_cfg.self.getOptionNumerical("GPUindex", -1);
m_iGPUIndex = (int)_cfg.self.getOptionNumerical("GPUIndex", m_iGPUIndex);
CC.markOptionParsed("GPUIndex");
diff --git a/src/CudaReconstructionAlgorithm2D.cpp b/src/CudaReconstructionAlgorithm2D.cpp
index 1e81390..6730cea 100644
--- a/src/CudaReconstructionAlgorithm2D.cpp
+++ b/src/CudaReconstructionAlgorithm2D.cpp
@@ -309,10 +309,7 @@ void CCudaReconstructionAlgorithm2D::run(int _iNrIterations)
m_bAlgoInit = true;
}
- float fPixelSize = volgeom.getPixelLengthX();
- float fSinogramScale = 1.0f/(fPixelSize*fPixelSize);
-
- ok = m_pAlgo->copyDataToGPU(m_pSinogram->getDataConst(), m_pSinogram->getGeometry()->getDetectorCount(), fSinogramScale,
+ ok = m_pAlgo->copyDataToGPU(m_pSinogram->getDataConst(), m_pSinogram->getGeometry()->getDetectorCount(),
m_pReconstruction->getDataConst(), volgeom.getGridColCount(),
m_bUseReconstructionMask ? m_pReconstructionMask->getDataConst() : 0, volgeom.getGridColCount(),
m_bUseSinogramMask ? m_pSinogramMask->getDataConst() : 0, m_pSinogram->getGeometry()->getDetectorCount());
diff --git a/src/Features.cpp b/src/Features.cpp
index 9114131..09a3499 100644
--- a/src/Features.cpp
+++ b/src/Features.cpp
@@ -34,6 +34,12 @@ _AstraExport bool hasFeature(const std::string &flag) {
if (flag == "cuda") {
return cudaEnabled();
}
+ if (flag == "projectors_scaled_as_line_integrals") {
+ return true;
+ }
+ if (flag == "fan_cone_BP_density_weighting_by_default") {
+ return true;
+ }
return false;
}
diff --git a/src/FilteredBackProjectionAlgorithm.cpp b/src/FilteredBackProjectionAlgorithm.cpp
index 423dc6c..6b4093d 100644
--- a/src/FilteredBackProjectionAlgorithm.cpp
+++ b/src/FilteredBackProjectionAlgorithm.cpp
@@ -167,6 +167,11 @@ bool CFilteredBackProjectionAlgorithm::initialize(const Config& _cfg)
m_filterConfig = getFilterConfigForAlgorithm(_cfg, this);
+ const CParallelProjectionGeometry2D* parprojgeom = dynamic_cast<CParallelProjectionGeometry2D*>(m_pSinogram->getGeometry());
+ if (!parprojgeom) {
+ ASTRA_ERROR("FBP currently only supports parallel projection geometries.");
+ return false;
+ }
// TODO: check that the angles are linearly spaced between 0 and pi
@@ -264,8 +269,12 @@ void CFilteredBackProjectionAlgorithm::run(int _iNrIterations)
DefaultBPPolicy(m_pReconstruction, &filteredSinogram));
// Scale data
- int iAngleCount = m_pProjector->getProjectionGeometry()->getProjectionAngleCount();
- (*m_pReconstruction) *= (PI/2)/iAngleCount;
+ const CVolumeGeometry2D& volGeom = *m_pProjector->getVolumeGeometry();
+ const CProjectionGeometry2D& projGeom = *m_pProjector->getProjectionGeometry();
+
+ int iAngleCount = projGeom.getProjectionAngleCount();
+ float fPixelArea = volGeom.getPixelArea();
+ (*m_pReconstruction) *= PI/(2*iAngleCount*fPixelArea);
m_pReconstruction->updateStatistics();
}
diff --git a/src/GeometryUtil2D.cpp b/src/GeometryUtil2D.cpp
index e09a3bc..806572f 100644
--- a/src/GeometryUtil2D.cpp
+++ b/src/GeometryUtil2D.cpp
@@ -28,6 +28,7 @@ along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#include "astra/GeometryUtil2D.h"
#include <cmath>
+#include <cstdio>
namespace astra {
@@ -158,14 +159,16 @@ bool getFanParameters(const SFanProjection &proj, unsigned int iProjDets, float
// project origin on detector line ( == project source on detector line)
double t = (- proj.fDetSX) * proj.fDetUX + (- proj.fDetSY) * proj.fDetUY;
+ t /= (proj.fDetUX * proj.fDetUX + proj.fDetUY * proj.fDetUY);
fOffset = (float)t - 0.5*iProjDets;
- // TODO: CHECKME
fOriginDetector = sqrt((proj.fDetSX + t * proj.fDetUX)*(proj.fDetSX + t * proj.fDetUX) + (proj.fDetSY + t * proj.fDetUY)*(proj.fDetSY + t * proj.fDetUY));
- //float fAngle = atan2(proj.fDetSX + t * proj.fDetUX - proj.fSrcX, proj.fDetSY + t * proj.fDetUY); // TODO: Fix order + sign
- fAngle = atan2(proj.fDetUY, proj.fDetUX); // TODO: Check order + sign
+ fAngle = atan2(proj.fDetUY, proj.fDetUX);
+
+ //fprintf(stderr, "getFanParams: s = (%f,%f) d = (%f,%f) u = (%f,%f)\n", proj.fSrcX, proj.fSrcY, proj.fDetSX, proj.fDetSY, proj.fDetUX, proj.fDetUY);
+ //fprintf(stderr, "getFanParams: fOS = %f, fOD = %f, detsize = %f, offset = %f (t = %f), angle = %f\n", fOriginSource, fOriginDetector, fDetSize, fOffset, t, fAngle);
return true;
}
diff --git a/tests/python/test_line2d.py b/tests/python/test_line2d.py
index d04ffb8..e5d8f2b 100644
--- a/tests/python/test_line2d.py
+++ b/tests/python/test_line2d.py
@@ -7,9 +7,9 @@ import pylab
# Display sinograms with mismatch on test failure
DISPLAY=False
-NONUNITDET=False
-OBLIQUE=False
-FLEXVOL=False
+NONUNITDET=True
+OBLIQUE=True
+FLEXVOL=True
NONSQUARE=False # non-square pixels not supported yet by most projectors
# Round interpolation weight to 8 bits to emulate CUDA texture unit precision
@@ -20,15 +20,8 @@ nloops = 50
seed = 123
-# FAILURES:
-# fan/cuda with flexible volume
-# detweight for fan/cuda
-# fan/strip relatively high numerical errors?
-# parvec/line+linear for oblique
-
-# INCONSISTENCY:
-# effective_detweight vs norm(detu) in line/linear (oblique)
-
+# KNOWN FAILURES:
+# fan/strip relatively high numerical errors around 45 degrees
# return length of intersection of the line through points src = (x,y)
@@ -454,23 +447,15 @@ class Test2DKernel(unittest.TestCase):
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
- try:
- detweight = pg['DetectorWidth']
- except KeyError:
- if 'fan' not in type:
- detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
- else:
- detweight = np.linalg.norm(pg['Vectors'][i//pg['DetectorCount'],4:6], ord=2)
-
# We compute line intersections with slightly bigger (cw) and
# smaller (aw) rectangles, and see if the kernel falls
# between these two values.
(aw,bw,cw) = intersect_line_rectangle_interval(src, det,
xmin, xmax, ymin, ymax,
1e-3)
- a[i] = aw * detweight
- b[i] = bw * detweight
- c[i] = cw * detweight
+ a[i] = aw
+ b[i] = bw
+ c[i] = cw
a = a.reshape(astra.functions.geom_size(pg))
b = b.reshape(astra.functions.geom_size(pg))
c = c.reshape(astra.functions.geom_size(pg))
@@ -494,17 +479,9 @@ class Test2DKernel(unittest.TestCase):
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
(xd, yd) = det - src
- try:
- detweight = pg['DetectorWidth']
- except KeyError:
- if 'fan' not in type:
- detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
- else:
- detweight = np.linalg.norm(pg['Vectors'][i//pg['DetectorCount'],4:6], ord=2)
-
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
- length = math.sqrt(1.0 + abs(yd/xd)**2)
+ length = math.sqrt(1.0 + abs(yd/xd)**2) * pixsize[0]
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
@@ -512,9 +489,9 @@ class Test2DKernel(unittest.TestCase):
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
- l += w * length * pixsize[0] * detweight
+ l += w * length
else:
- length = math.sqrt(1.0 + abs(xd/yd)**2)
+ length = math.sqrt(1.0 + abs(xd/yd)**2) * pixsize[1]
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
@@ -522,7 +499,7 @@ class Test2DKernel(unittest.TestCase):
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
- l += w * length * pixsize[1] * detweight
+ l += w * length
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
@@ -532,21 +509,26 @@ class Test2DKernel(unittest.TestCase):
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
- elif proj_type == 'distance_driven':
+ elif proj_type == 'distance_driven' and 'par' in type:
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
- (xd, yd) = center[1] - center[0]
+ (src, det) = center
+ try:
+ detweight = pg['DetectorWidth']
+ except KeyError:
+ detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
+ (xd, yd) = det - src
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
- l += intersect_ray_vertical_segment(edge1, edge2, x, y_seg) * pixsize[0]
+ l += intersect_ray_vertical_segment(edge1, edge2, x, y_seg) * pixsize[0] / detweight
else:
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
- l += intersect_ray_horizontal_segment(edge1, edge2, y, x_seg) * pixsize[1]
+ l += intersect_ray_horizontal_segment(edge1, edge2, y, x_seg) * pixsize[1] / detweight
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
@@ -560,6 +542,7 @@ class Test2DKernel(unittest.TestCase):
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
+ detweight = effective_detweight(src, det, edge2[1] - edge1[1])
det_dist = np.linalg.norm(src-det, ord=2)
l = 0.0
for j in range(rect_min[0], rect_max[0]):
@@ -570,7 +553,7 @@ class Test2DKernel(unittest.TestCase):
ymin = origin[1] + (+0.5 * shape[1] - k - 1) * pixsize[1]
ymax = origin[1] + (+0.5 * shape[1] - k) * pixsize[1]
ycen = 0.5 * (ymin + ymax)
- scale = det_dist / np.linalg.norm( src - np.array((xcen,ycen)), ord=2 )
+ scale = det_dist / (np.linalg.norm( src - np.array((xcen,ycen)), ord=2 ) * detweight)
w = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax)
l += w * scale
a[i] = l
@@ -578,14 +561,20 @@ class Test2DKernel(unittest.TestCase):
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
- TOL = 8e-3
+ # BUG: Known bug in fan/strip code around 45 degree projections causing larger errors than desirable
+ TOL = 4e-2
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
elif proj_type == 'strip':
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
- a[i] = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax)
+ (src, det) = center
+ try:
+ detweight = pg['DetectorWidth']
+ except KeyError:
+ detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
+ a[i] = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax) / detweight
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
@@ -594,46 +583,83 @@ class Test2DKernel(unittest.TestCase):
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
+ else:
+ raise RuntimeError("Unsupported projector")
- def multi_test(self, type, proj_type):
- np.random.seed(seed)
- for _ in range(nloops):
- self.single_test(type, proj_type)
-
- def test_par(self):
- self.multi_test('parallel', 'line')
- def test_par_linear(self):
- self.multi_test('parallel', 'linear')
- def test_par_cuda(self):
- self.multi_test('parallel', 'cuda')
- def test_par_dd(self):
- self.multi_test('parallel', 'distance_driven')
- def test_par_strip(self):
- self.multi_test('parallel', 'strip')
- def test_fan(self):
- self.multi_test('fanflat', 'line')
- def test_fan_strip(self):
- self.multi_test('fanflat', 'strip')
- def test_fan_cuda(self):
- self.multi_test('fanflat', 'cuda')
- def test_parvec(self):
- self.multi_test('parallel_vec', 'line')
- def test_parvec_linear(self):
- self.multi_test('parallel_vec', 'linear')
- def test_parvec_dd(self):
- self.multi_test('parallel_vec', 'distance_driven')
- def test_parvec_strip(self):
- self.multi_test('parallel_vec', 'strip')
- def test_parvec_cuda(self):
- self.multi_test('parallel_vec', 'cuda')
- def test_fanvec(self):
- self.multi_test('fanflat_vec', 'line')
- def test_fanvec_cuda(self):
- self.multi_test('fanflat_vec', 'cuda')
+ def single_test_adjoint(self, type, proj_type):
+ shape = np.random.randint(*range2d, size=2)
+ if FLEXVOL:
+ if not NONSQUARE:
+ pixsize = np.array([0.5, 0.5]) + np.random.random()
+ else:
+ pixsize = 0.5 + np.random.random(size=2)
+ origin = 10 * np.random.random(size=2)
+ else:
+ pixsize = (1.,1.)
+ origin = (0.,0.)
+ vg = astra.create_vol_geom(shape[1], shape[0],
+ origin[0] - 0.5 * shape[0] * pixsize[0],
+ origin[0] + 0.5 * shape[0] * pixsize[0],
+ origin[1] - 0.5 * shape[1] * pixsize[1],
+ origin[1] + 0.5 * shape[1] * pixsize[1])
+ if type == 'parallel':
+ pg = gen_random_geometry_parallel()
+ projector_id = astra.create_projector(proj_type, pg, vg)
+ elif type == 'parallel_vec':
+ pg = gen_random_geometry_parallel_vec()
+ projector_id = astra.create_projector(proj_type, pg, vg)
+ elif type == 'fanflat':
+ pg = gen_random_geometry_fanflat()
+ projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
+ elif type == 'fanflat_vec':
+ pg = gen_random_geometry_fanflat_vec()
+ projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
+ for i in range(5):
+ X = np.random.random((shape[1], shape[0]))
+ Y = np.random.random(astra.geom_size(pg))
+
+ sinogram_id, fX = astra.create_sino(X, projector_id)
+ bp_id, fTY = astra.create_backprojection(Y, projector_id)
+
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(bp_id)
+
+ da = np.dot(fX.ravel(), Y.ravel())
+ db = np.dot(X.ravel(), fTY.ravel())
+ m = np.abs(da - db)
+ TOL = 1e-3 if 'cuda' not in proj_type else 1e-1
+ if m / da >= TOL:
+ print(vg)
+ print(pg)
+ print(m/da, da/db, da, db)
+ self.assertTrue(m / da < TOL)
+ astra.projector.delete(projector_id)
+ def multi_test(self, type, proj_type):
+ np.random.seed(seed)
+ for _ in range(nloops):
+ self.single_test(type, proj_type)
+ def multi_test_adjoint(self, type, proj_type):
+ np.random.seed(seed)
+ for _ in range(nloops):
+ self.single_test_adjoint(type, proj_type)
+
+__combinations = { 'parallel': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
+ 'parallel_vec': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
+ 'fanflat': [ 'line', 'strip', 'cuda' ],
+ 'fanflat_vec': [ 'line', 'cuda' ] }
+
+for k, l in __combinations.items():
+ for v in l:
+ def f(k,v):
+ return lambda self: self.multi_test(k, v)
+ def f_adj(k,v):
+ return lambda self: self.multi_test_adjoint(k, v)
+ setattr(Test2DKernel, 'test_' + k + '_' + v, f(k,v))
+ setattr(Test2DKernel, 'test_' + k + '_' + v + '_adjoint', f_adj(k,v))
if __name__ == '__main__':
unittest.main()
diff --git a/tests/python/test_rec_scaling.py b/tests/python/test_rec_scaling.py
new file mode 100644
index 0000000..621fd8a
--- /dev/null
+++ b/tests/python/test_rec_scaling.py
@@ -0,0 +1,213 @@
+import numpy as np
+import unittest
+import astra
+import math
+import pylab
+
+DISPLAY=False
+
+def VolumeGeometries(is3D,noncube):
+ if not is3D:
+ for s in [0.8, 1.0, 1.25]:
+ yield astra.create_vol_geom(128, 128, -64*s, 64*s, -64*s, 64*s)
+ elif noncube:
+ for sx in [0.8, 1.0]:
+ for sy in [0.8, 1.0]:
+ for sz in [0.8, 1.0]:
+ yield astra.create_vol_geom(64, 64, 64, -32*sx, 32*sx, -32*sy, 32*sy, -32*sz, 32*sz)
+ else:
+ for s in [0.8, 1.0]:
+ yield astra.create_vol_geom(64, 64, 64, -32*s, 32*s, -32*s, 32*s, -32*s, 32*s)
+
+
+def ProjectionGeometries(type):
+ if type == 'parallel':
+ for dU in [0.8, 1.0, 1.25]:
+ yield astra.create_proj_geom('parallel', dU, 256, np.linspace(0,np.pi,180,False))
+ elif type == 'fanflat':
+ for dU in [0.8, 1.0, 1.25]:
+ for src in [500, 1000]:
+ for det in [0, 250, 500]:
+ yield astra.create_proj_geom('fanflat', dU, 256, np.linspace(0,2*np.pi,180,False), src, det)
+ elif type == 'parallel3d':
+ for dU in [0.8, 1.0]:
+ for dV in [0.8, 1.0]:
+ yield astra.create_proj_geom('parallel3d', dU, dV, 128, 128, np.linspace(0,np.pi,180,False))
+ elif type == 'parallel3d_vec':
+ for j in range(10):
+ Vectors = np.zeros([180,12])
+ wu = 0.6 + 0.8 * np.random.random()
+ wv = 0.6 + 0.8 * np.random.random()
+ for i in range(Vectors.shape[0]):
+ l = 0.6 + 0.8 * np.random.random()
+ angle1 = 2*np.pi*np.random.random()
+ angle2 = angle1 + 0.5 * np.random.random()
+ angle3 = 0.1*np.pi*np.random.random()
+ detc = 10 * np.random.random(size=3)
+ detu = [ math.cos(angle1) * wu, math.sin(angle1) * wu, 0 ]
+ detv = [ -math.sin(angle1) * math.sin(angle3) * wv, math.cos(angle1) * math.sin(angle3) * wv, math.cos(angle3) * wv ]
+ ray = [ math.sin(angle2) * l, -math.cos(angle2) * l, 0 ]
+ Vectors[i, :] = [ ray[0], ray[1], ray[2], detc[0], detc[1], detc[2], detu[0], detu[1], detu[2], detv[0], detv[1], detv[2] ]
+ pg = astra.create_proj_geom('parallel3d_vec', 128, 128, Vectors)
+ yield pg
+ elif type == 'cone':
+ for dU in [0.8, 1.0]:
+ for dV in [0.8, 1.0]:
+ for src in [500, 1000]:
+ for det in [0, 250]:
+ yield astra.create_proj_geom('cone', dU, dV, 128, 128, np.linspace(0,2*np.pi,180,False), src, det)
+ elif type == 'cone_vec':
+ for j in range(10):
+ Vectors = np.zeros([180,12])
+ wu = 0.6 + 0.8 * np.random.random()
+ wv = 0.6 + 0.8 * np.random.random()
+ for i in range(Vectors.shape[0]):
+ l = 256 * (0.5 * np.random.random())
+ angle1 = 2*np.pi*np.random.random()
+ angle2 = angle1 + 0.5 * np.random.random()
+ angle3 = 0.1*np.pi*np.random.random()
+ detc = 10 * np.random.random(size=3)
+ detu = [ math.cos(angle1) * wu, math.sin(angle1) * wu, 0 ]
+ detv = [ -math.sin(angle1) * math.sin(angle3) * wv, math.cos(angle1) * math.sin(angle3) * wv, math.cos(angle3) * wv ]
+ src = [ math.sin(angle2) * l, -math.cos(angle2) * l, 0 ]
+ Vectors[i, :] = [ src[0], src[1], src[2], detc[0], detc[1], detc[2], detu[0], detu[1], detu[2], detv[0], detv[1], detv[2] ]
+ pg = astra.create_proj_geom('parallel3d_vec', 128, 128, Vectors)
+ yield pg
+
+
+class TestRecScale(unittest.TestCase):
+ def single_test(self, geom_type, proj_type, alg, iters):
+ if alg == 'FBP' and 'fanflat' in geom_type:
+ self.skipTest('CPU FBP is parallel-beam only')
+ is3D = (geom_type in ['parallel3d', 'cone'])
+ for vg in VolumeGeometries(is3D, 'FDK' not in alg):
+ for pg in ProjectionGeometries(geom_type):
+ if not is3D:
+ vol = np.zeros((128,128),dtype=np.float32)
+ vol[50:70,50:70] = 1
+ else:
+ vol = np.zeros((64,64,64),dtype=np.float32)
+ vol[25:35,25:35,25:35] = 1
+ proj_id = astra.create_projector(proj_type, pg, vg)
+ if not is3D:
+ sino_id, sinogram = astra.create_sino(vol, proj_id)
+ else:
+ sino_id, sinogram = astra.create_sino3d_gpu(vol, pg, vg)
+ if not is3D:
+ DATA = astra.data2d
+ else:
+ DATA = astra.data3d
+
+ rec_id = DATA.create('-vol', vg, 0.0 if 'EM' not in alg else 1.0)
+
+ cfg = astra.astra_dict(alg)
+ cfg['ReconstructionDataId'] = rec_id
+ cfg['ProjectionDataId'] = sino_id
+ cfg['ProjectorId'] = proj_id
+ alg_id = astra.algorithm.create(cfg)
+
+ for i in range(iters):
+ astra.algorithm.run(alg_id, 1)
+ rec = DATA.get(rec_id)
+ astra.astra.delete([sino_id, alg_id, alg_id, proj_id])
+ if not is3D:
+ val = np.sum(rec[55:65,55:65]) / 100.
+ else:
+ val = np.sum(rec[27:32,27:32,27:32]) / 125.
+ TOL = 5e-2
+ if DISPLAY and abs(val-1.0) >= TOL:
+ print(geom_type, proj_type, alg, vg, pg)
+ print(val)
+ pylab.gray()
+ if not is3D:
+ pylab.imshow(rec)
+ else:
+ pylab.imshow(rec[:,32,:])
+ pylab.show()
+ self.assertTrue(abs(val-1.0) < TOL)
+
+ def single_test_adjoint3D(self, geom_type, proj_type):
+ for vg in VolumeGeometries(True, True):
+ for pg in ProjectionGeometries(geom_type):
+ for i in range(5):
+ X = np.random.random(astra.geom_size(vg))
+ Y = np.random.random(astra.geom_size(pg))
+ proj_id, fX = astra.create_sino3d_gpu(X, pg, vg)
+ bp_id, fTY = astra.create_backprojection3d_gpu(Y, pg, vg)
+
+ astra.data3d.delete([proj_id, bp_id])
+
+ da = np.dot(fX.ravel(), Y.ravel())
+ db = np.dot(X.ravel(), fTY.ravel())
+ m = np.abs(da - db)
+ TOL = 1e-1
+ if m / da >= TOL:
+ print(vg)
+ print(pg)
+ print(m/da, da/db, da, db)
+ self.assertTrue(m / da < TOL)
+
+
+
+
+
+__combinations = {
+ 'parallel': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
+ 'fanflat': [ 'line_fanflat', 'strip_fanflat', 'cuda' ],
+ 'parallel3d': [ 'cuda3d' ],
+ 'cone': [ 'cuda3d' ],
+}
+
+__combinations_adjoint = {
+ 'parallel3d': [ 'cuda3d' ],
+ 'cone': [ 'cuda3d' ],
+ 'parallel3d_vec': [ 'cuda3d' ],
+ 'cone_vec': [ 'cuda3d' ],
+}
+
+__algs = {
+ 'SIRT': 50, 'SART': 10*180, 'CGLS': 30,
+ 'FBP': 1
+}
+
+__algs_CUDA = {
+ 'SIRT_CUDA': 50, 'SART_CUDA': 10*180, 'CGLS_CUDA': 30, 'EM_CUDA': 50,
+ 'FBP_CUDA': 1
+}
+
+__algs_parallel3d = {
+ 'SIRT3D_CUDA': 200, 'CGLS3D_CUDA': 20,
+}
+
+__algs_cone = {
+ 'SIRT3D_CUDA': 200, 'CGLS3D_CUDA': 20,
+ 'FDK_CUDA': 1
+}
+
+
+
+for k, l in __combinations.items():
+ for v in l:
+ is3D = (k in ['parallel3d', 'cone'])
+ if k == 'parallel3d':
+ A = __algs_parallel3d
+ elif k == 'cone':
+ A = __algs_cone
+ elif v == 'cuda':
+ A = __algs_CUDA
+ else:
+ A = __algs
+ for a, i in A.items():
+ def f(k, v, a, i):
+ return lambda self: self.single_test(k, v, a, i)
+ setattr(TestRecScale, 'test_' + a + '_' + k + '_' + v, f(k,v,a,i))
+
+for k, l in __combinations_adjoint.items():
+ for v in l:
+ def g(k, v):
+ return lambda self: self.single_test_adjoint3D(k, v)
+ setattr(TestRecScale, 'test_adjoint_' + k + '_' + v, g(k,v))
+
+if __name__ == '__main__':
+ unittest.main()
+
diff --git a/tests/test_ParallelBeamLineKernelProjector2D.cpp b/tests/test_ParallelBeamLineKernelProjector2D.cpp
deleted file mode 100644
index 71130c1..0000000
--- a/tests/test_ParallelBeamLineKernelProjector2D.cpp
+++ /dev/null
@@ -1,82 +0,0 @@
-/*
------------------------------------------------------------------------
-Copyright: 2010-2018, imec Vision Lab, University of Antwerp
- 2014-2018, CWI, Amsterdam
-
-Contact: astra@astra-toolbox.com
-Website: http://www.astra-toolbox.com/
-
-This file is part of the ASTRA Toolbox.
-
-
-The ASTRA Toolbox is free software: you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-The ASTRA Toolbox is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-
------------------------------------------------------------------------
-*/
-
-
-#define BOOST_TEST_DYN_LINK
-#include <boost/test/unit_test.hpp>
-#include <boost/test/auto_unit_test.hpp>
-#include <boost/test/floating_point_comparison.hpp>
-
-#include "astra/ParallelBeamLineKernelProjector2D.h"
-#include "astra/ParallelProjectionGeometry2D.h"
-#include "astra/VolumeGeometry2D.h"
-
-struct TestParallelBeamLineKernelProjector2D {
- TestParallelBeamLineKernelProjector2D()
- {
- astra::float32 angles[] = { 1.0f };
- BOOST_REQUIRE( projGeom.initialize(1, 9, 1.0f, angles) );
- BOOST_REQUIRE( volGeom.initialize(6, 4) );
- BOOST_REQUIRE( proj.initialize(&projGeom, &volGeom) );
- }
- ~TestParallelBeamLineKernelProjector2D()
- {
-
- }
-
- astra::CParallelBeamLineKernelProjector2D proj;
- astra::CParallelProjectionGeometry2D projGeom;
- astra::CVolumeGeometry2D volGeom;
-};
-
-BOOST_FIXTURE_TEST_CASE( testParallelBeamLineKernelProjector2D_General, TestParallelBeamLineKernelProjector2D )
-{
-
-}
-
-BOOST_FIXTURE_TEST_CASE( testParallelBeamLineKernelProjector2D_Rectangle, TestParallelBeamLineKernelProjector2D )
-{
- int iMax = proj.getProjectionWeightsCount(0);
- BOOST_REQUIRE(iMax > 0);
-
- astra::SPixelWeight* pPix = new astra::SPixelWeight[iMax];
- BOOST_REQUIRE(pPix);
-
- int iCount;
- proj.computeSingleRayWeights(0, 4, pPix, iMax, iCount);
- BOOST_REQUIRE(iCount <= iMax);
-
- astra::float32 fWeight = 0;
- for (int i = 0; i < iCount; ++i)
- fWeight += pPix[i].m_fWeight;
-
- BOOST_CHECK_SMALL(fWeight - 7.13037f, 0.00001f); // 6 / sin(1)
-
- delete[] pPix;
-}
-
-
diff --git a/tests/test_ParallelBeamLinearKernelProjector2D.cpp b/tests/test_ParallelBeamLinearKernelProjector2D.cpp
deleted file mode 100644
index 4610aa5..0000000
--- a/tests/test_ParallelBeamLinearKernelProjector2D.cpp
+++ /dev/null
@@ -1,170 +0,0 @@
-/*
------------------------------------------------------------------------
-Copyright: 2010-2018, imec Vision Lab, University of Antwerp
- 2014-2018, CWI, Amsterdam
-
-Contact: astra@astra-toolbox.com
-Website: http://www.astra-toolbox.com/
-
-This file is part of the ASTRA Toolbox.
-
-
-The ASTRA Toolbox is free software: you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-The ASTRA Toolbox is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-
------------------------------------------------------------------------
-*/
-
-
-#define BOOST_TEST_DYN_LINK
-#include <boost/test/unit_test.hpp>
-#include <boost/test/auto_unit_test.hpp>
-#include <boost/test/floating_point_comparison.hpp>
-
-#include "astra/ParallelBeamLineKernelProjector2D.h"
-#include "astra/ParallelBeamLinearKernelProjector2D.h"
-#include "astra/ParallelBeamStripKernelProjector2D.h"
-#include "astra/ParallelProjectionGeometry2D.h"
-#include "astra/VolumeGeometry2D.h"
-#include "astra/ProjectionGeometry2D.h"
-
-#include <ctime>
-
-using astra::float32;
-
-struct TestParallelBeamLinearKernelProjector2D {
- TestParallelBeamLinearKernelProjector2D()
- {
- astra::float32 angles[] = { 2.6f };
- BOOST_REQUIRE( projGeom.initialize(1, 3, 1.0f, angles) );
- BOOST_REQUIRE( volGeom.initialize(3, 2) );
- BOOST_REQUIRE( proj.initialize(&projGeom, &volGeom) );
- }
- ~TestParallelBeamLinearKernelProjector2D()
- {
-
- }
-
- astra::CParallelBeamLinearKernelProjector2D proj;
- astra::CParallelProjectionGeometry2D projGeom;
- astra::CVolumeGeometry2D volGeom;
-};
-
-BOOST_FIXTURE_TEST_CASE( testParallelBeamLinearKernelProjector2D_General, TestParallelBeamLinearKernelProjector2D )
-{
-
-}
-
-
-// Compute linear kernel for a single volume pixel/detector pixel combination
-float32 compute_linear_kernel(const astra::CProjectionGeometry2D& projgeom, const astra::CVolumeGeometry2D& volgeom,
- int iX, int iY, int iDet, float32 fAngle)
-{
- // projection of center of volume pixel on detector array
- float32 fDetProj = (iX - (volgeom.getGridColCount()-1.0f)/2.0f ) * volgeom.getPixelLengthX() * cos(fAngle) - (iY - (volgeom.getGridRowCount()-1.0f)/2.0f ) * volgeom.getPixelLengthY() * sin(fAngle);
-
- // start of detector pixel on detector array
- float32 fDetStart = projgeom.indexToDetectorOffset(iDet) - 0.5f;
-
-// printf("(%d,%d,%d): %f in (%f,%f)\n", iX,iY,iDet,fDetProj, fDetStart, fDetStart+1.0f);
-
- // projection of center of next volume pixel on detector array
- float32 fDetStep;
- // length of projection ray through volume pixel
- float32 fWeight;
-
- if (fabs(cos(fAngle)) > fabs(sin(fAngle))) {
- fDetStep = volgeom.getPixelLengthY() * fabs(cos(fAngle));
- fWeight = projgeom.getDetectorWidth() * volgeom.getPixelLengthX() * 1.0f / fabs(cos(fAngle));
- } else {
- fDetStep = volgeom.getPixelLengthX() * fabs(sin(fAngle));
- fWeight = projgeom.getDetectorWidth() * volgeom.getPixelLengthY() * 1.0f / fabs(sin(fAngle));
- }
-
-// printf("step: %f\n weight: %f\n", fDetStep, fWeight);
-
- // center of detector pixel on detector array
- float32 fDetCenter = fDetStart + 0.5f;
-
- // unweighted contribution of this volume pixel:
- // linear interpolation between
- // fDetCenter - fDetStep |---> 0
- // fDetCenter |---> 1
- // fDetCenter + fDetStep |---> 0
- float32 fBase;
- if (fDetCenter <= fDetProj) {
- fBase = (fDetCenter - (fDetProj - fDetStep))/fDetStep;
- } else {
- fBase = ((fDetProj + fDetStep) - fDetCenter)/fDetStep;
- }
-// printf("base: %f\n", fBase);
- if (fBase < 0) fBase = 0;
- return fBase * fWeight;
-}
-
-BOOST_AUTO_TEST_CASE( testParallelBeamLinearKernelProjector2D_Rectangles )
-{
- astra::CParallelBeamLinearKernelProjector2D proj;
- astra::CParallelProjectionGeometry2D projGeom;
- astra::CVolumeGeometry2D volGeom;
-
- const unsigned int iRandomTestCount = 100;
-
- unsigned int iSeed = time(0);
- srand(iSeed);
-
- for (unsigned int iTest = 0; iTest < iRandomTestCount; ++iTest) {
- int iDetectorCount = 1 + (rand() % 100);
- int iRows = 1 + (rand() % 100);
- int iCols = 1 + (rand() % 100);
-
-
- astra::float32 angles[] = { rand() * 2.0f*astra::PI / RAND_MAX };
- projGeom.initialize(1, iDetectorCount, 0.8f, angles);
- volGeom.initialize(iCols, iRows);
- proj.initialize(&projGeom, &volGeom);
-
- int iMax = proj.getProjectionWeightsCount(0);
- BOOST_REQUIRE(iMax > 0);
-
- astra::SPixelWeight* pPix = new astra::SPixelWeight[iMax];
- BOOST_REQUIRE(pPix);
-
- astra::float32 fWeight = 0;
- for (int iDet = 0; iDet < projGeom.getDetectorCount(); ++iDet) {
- int iCount;
- proj.computeSingleRayWeights(0, iDet, pPix, iMax, iCount);
- BOOST_REQUIRE(iCount <= iMax);
-
- astra::float32 fW = 0;
- for (int i = 0; i < iCount; ++i) {
- float32 fTest = compute_linear_kernel(
- projGeom,
- volGeom,
- pPix[i].m_iIndex % volGeom.getGridColCount(),
- pPix[i].m_iIndex / volGeom.getGridColCount(),
- iDet,
- projGeom.getProjectionAngle(0));
- BOOST_CHECK_SMALL( pPix[i].m_fWeight - fTest, 0.0004f);
- fW += pPix[i].m_fWeight;
- }
-
- fWeight += fW;
-
- }
-
- delete[] pPix;
- }
-}
-
-