diff options
author | Willem Jan Palenstijn <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
---|---|---|
committer | wpalenst <WillemJan.Palenstijn@uantwerpen.be> | 2013-07-01 22:34:11 +0000 |
commit | b2fc6c70434674d74551c3a6c01ffb3233499312 (patch) | |
tree | b17f080ebc504ab85ebb7c3d89f917fd87ce9e00 /cuda/3d/fdk.cu | |
download | astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.gz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.bz2 astra-b2fc6c70434674d74551c3a6c01ffb3233499312.tar.xz astra-b2fc6c70434674d74551c3a6c01ffb3233499312.zip |
Update version to 1.3
Diffstat (limited to 'cuda/3d/fdk.cu')
-rw-r--r-- | cuda/3d/fdk.cu | 646 |
1 files changed, 646 insertions, 0 deletions
diff --git a/cuda/3d/fdk.cu b/cuda/3d/fdk.cu new file mode 100644 index 0000000..ad0604c --- /dev/null +++ b/cuda/3d/fdk.cu @@ -0,0 +1,646 @@ +/* +----------------------------------------------------------------------- +Copyright 2012 iMinds-Vision Lab, University of Antwerp + +Contact: astra@ua.ac.be +Website: http://astra.ua.ac.be + + +This file is part of the +All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). + +The ASTRA Toolbox is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +The ASTRA Toolbox is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. + +----------------------------------------------------------------------- +$Id$ +*/ + +#include <cstdio> +#include <cassert> +#include <iostream> +#include <list> + +#include <cuda.h> +#include "util3d.h" + +#ifdef STANDALONE +#include "cone_fp.h" +#include "testutil.h" +#endif + +#include "dims3d.h" +#include "../2d/fft.h" + +typedef texture<float, 3, cudaReadModeElementType> texture3D; + +static texture3D gT_coneProjTexture; + +namespace astraCUDA3d { + +static const unsigned int g_volBlockZ = 16; + +static const unsigned int g_anglesPerBlock = 64; +static const unsigned int g_volBlockX = 32; +static const unsigned int g_volBlockY = 16; + +static const unsigned int g_anglesPerWeightBlock = 16; +static const unsigned int g_detBlockU = 32; +static const unsigned int g_detBlockV = 32; + +static const unsigned g_MaxAngles = 2048; + +__constant__ float gC_angle_sin[g_MaxAngles]; +__constant__ float gC_angle_cos[g_MaxAngles]; +__constant__ float gC_angle[g_MaxAngles]; + + +// per-detector u/v shifts? + +static bool bindProjDataTexture(const cudaArray* array) +{ + cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); + + gT_coneProjTexture.addressMode[0] = cudaAddressModeClamp; + gT_coneProjTexture.addressMode[1] = cudaAddressModeClamp; + gT_coneProjTexture.addressMode[2] = cudaAddressModeClamp; + gT_coneProjTexture.filterMode = cudaFilterModeLinear; + gT_coneProjTexture.normalized = false; + + cudaBindTextureToArray(gT_coneProjTexture, array, channelDesc); + + // TODO: error value? + + return true; +} + + +__global__ void devBP_FDK(void* D_volData, unsigned int volPitch, int startAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fInvDetUSize, float fInvDetVSize, const SDimensions3D dims) +{ + float* volData = (float*)D_volData; + + int endAngle = startAngle + g_anglesPerBlock; + if (endAngle > dims.iProjAngles) + endAngle = dims.iProjAngles; + + // threadIdx: x = rel x + // y = rel y + + // blockIdx: x = x + y + // y = z + + + // TO TRY: precompute part of detector intersection formulas in shared mem? + // TO TRY: inner loop over z, gather ray values in shared mem + + const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; + const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; + + if (X > dims.iVolX) + return; + if (Y > dims.iVolY) + return; + + const int startZ = blockIdx.y * g_volBlockZ; + int endZ = startZ + g_volBlockZ; + if (endZ > dims.iVolZ) + endZ = dims.iVolZ; + + float fX = X - 0.5f*dims.iVolX + 0.5f; + float fY = Y - 0.5f*dims.iVolY + 0.5f; + float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - fSrcZ; + + const float fU_base = 0.5f*dims.iProjU - 0.5f + 1.5f; + const float fV_base = 0.5f*dims.iProjV - 0.5f + 1.5f + (fDetZ-fSrcZ); + + // Note re. fZ/rV_base: the computations below are all relative to the + // optical axis, so we do the Z-adjustments beforehand. + + for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f) + { + + float fVal = 0.0f; + float fAngle = startAngle + 0.5f; + + for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) + { + + const float cos_theta = gC_angle_cos[angle]; + const float sin_theta = gC_angle_sin[angle]; + + const float fR = fSrcOrigin; + const float fD = fR - fX * sin_theta + fY * cos_theta; + float fWeight = fR / fD; + fWeight *= fWeight; + + const float fScaleFactor = (fR + fDetOrigin) / fD; + const float fU = fU_base + (fX*cos_theta+fY*sin_theta) * fScaleFactor * fInvDetUSize; + const float fV = fV_base + fZ * fScaleFactor * fInvDetVSize; + + fVal += tex3D(gT_coneProjTexture, fU, fAngle, fV); + + } + + volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal; +// projData[(angle*dims.iProjV+detectorV)*projPitch+detectorU] = 10.0f; +// if (threadIdx.x == 0 && threadIdx.y == 0) { printf("%d,%d,%d [%d / %d] -> %f\n", angle, detectorU, detectorV, (angle*dims.iProjV+detectorV)*projPitch+detectorU, projPitch, projData[(angle*dims.iProjV+detectorV)*projPitch+detectorU]); } + } + +} + + +bool FDK_BP(cudaPitchedPtr D_volumeData, + cudaPitchedPtr D_projData, + float fSrcOrigin, float fDetOrigin, + float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, + const SDimensions3D& dims, const float* angles) +{ + // transfer projections to array + + cudaArray* cuArray = allocateProjectionArray(dims); + transferProjectionsToArray(D_projData, cuArray, dims); + + bindProjDataTexture(cuArray); + + float* angle_sin = new float[dims.iProjAngles]; + float* angle_cos = new float[dims.iProjAngles]; + + for (unsigned int i = 0; i < dims.iProjAngles; ++i) { + angle_sin[i] = sinf(angles[i]); + angle_cos[i] = cosf(angles[i]); + } + cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_sin, angle_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); + cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_cos, angle_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); + assert(e1 == cudaSuccess); + assert(e2 == cudaSuccess); + + delete[] angle_sin; + delete[] angle_cos; + + dim3 dimBlock(g_volBlockX, g_volBlockY); + + dim3 dimGrid(((dims.iVolX+g_volBlockX-1)/g_volBlockX)*((dims.iVolY+g_volBlockY-1)/g_volBlockY), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ); + + // timeval t; + // tic(t); + + for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) { + devBP_FDK<<<dimGrid, dimBlock>>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, 1.0f / fDetUSize, 1.0f / fDetVSize, dims); + } + + cudaTextForceKernelsCompletion(); + + cudaFreeArray(cuArray); + + // printf("%f\n", toc(t)); + + return true; +} + +__global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, const SDimensions3D dims) +{ + float* projData = (float*)D_projData; + int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y; + if (angle >= endAngle) + return; + + const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; + const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; + int endDetectorV = startDetectorV + g_detBlockV; + if (endDetectorV > dims.iProjV) + endDetectorV = dims.iProjV; + + // We need the length of the central ray and the length of the ray(s) to + // our detector pixel(s). + + const float fCentralRayLength = fSrcOrigin + fDetOrigin; + + const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize; + + const float fT = fCentralRayLength * fCentralRayLength + fU * fU; + + float fV = (startDetectorV - 0.5f*dims.iProjV + 0.5f) * fDetVSize + fDetZ - fSrcZ; + + for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) + { + const float fRayLength = sqrtf(fT + fV * fV); + + const float fWeight = fCentralRayLength / fRayLength; + + projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight; + + fV += 1.0f; + } +} + +__global__ void devFDK_ParkerWeight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fCentralFanAngle, const SDimensions3D dims) +{ + float* projData = (float*)D_projData; + int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y; + if (angle >= endAngle) + return; + + const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; + const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; + int endDetectorV = startDetectorV + g_detBlockV; + if (endDetectorV > dims.iProjV) + endDetectorV = dims.iProjV; + + // We need the length of the central ray and the length of the projection + // of our ray onto the central slice + + const float fCentralRayLength = fSrcOrigin + fDetOrigin; + + // TODO: Detector pixel size + const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize; + + //const float fGamma = atanf(fU / fCentralRayLength); + //const float fBeta = gC_angle[angle]; + const float fGamma = atanf(fU / fCentralRayLength); + const float fBeta = -gC_angle[angle]; + + // compute the weight depending on the location in the central fan's radon + // space + float fWeight; + + if (fBeta <= 0.0f) { + fWeight = 0.0f; + } else if (fBeta <= 2.0f*(fCentralFanAngle + fGamma)) { + fWeight = sinf((M_PI / 4.0f) * fBeta / (fCentralFanAngle + fGamma)); + fWeight *= fWeight; + } else if (fBeta <= M_PI + 2*fGamma) { + fWeight = 1.0f; + } else if (fBeta <= M_PI + 2*fCentralFanAngle) { + fWeight = sinf((M_PI / 4.0f) * (M_PI + 2.0f*fCentralFanAngle - fBeta) / (fCentralFanAngle - fGamma)); + fWeight *= fWeight; + } else { + fWeight = 0.0f; + } + + for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) + { + + projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight; + + } +} + + + +// Perform the FDK pre-weighting and filtering +bool FDK_Filter(cudaPitchedPtr D_projData, + cufftComplex * D_filter, + float fSrcOrigin, float fDetOrigin, + float fSrcZ, float fDetZ, + float fDetUSize, float fDetVSize, bool bShortScan, + const SDimensions3D& dims, const float* angles) +{ + // The pre-weighting factor for a ray is the cosine of the angle between + // the central line and the ray. + + dim3 dimBlock(g_detBlockU, g_anglesPerWeightBlock); + dim3 dimGrid( ((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV), + (dims.iProjAngles+g_anglesPerWeightBlock-1)/g_anglesPerWeightBlock); + + int projPitch = D_projData.pitch/sizeof(float); + + devFDK_preweight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fDetVSize, dims); + + cudaTextForceKernelsCompletion(); + + if (bShortScan) { + // We do short-scan Parker weighting + + cudaError_t e1 = cudaMemcpyToSymbol(gC_angle, angles, + dims.iProjAngles*sizeof(float), 0, + cudaMemcpyHostToDevice); + assert(!e1); + + // TODO: detector pixel size! + float fCentralFanAngle = atanf((dims.iProjU*0.5f) / + (fSrcOrigin + fDetOrigin)); + + devFDK_ParkerWeight<<<dimGrid, dimBlock>>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fCentralFanAngle, dims); + + } + + cudaTextForceKernelsCompletion(); + + + // The filtering is a regular ramp filter per detector line. + + int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU); + int iHalfFFTSize = calcFFTFourSize(iPaddedDetCount); + + + + // We process one sinogram at a time. + float* D_sinoData = (float*)D_projData.ptr; + + cufftComplex * D_sinoFFT = NULL; + allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_sinoFFT); + + bool ok = true; + + for (int v = 0; v < dims.iProjV; ++v) { + + ok = runCudaFFT(dims.iProjAngles, D_sinoData, projPitch, 0, + dims.iProjU, iPaddedDetCount, iHalfFFTSize, + D_sinoFFT); + + if (!ok) break; + + applyFilter(dims.iProjAngles, iHalfFFTSize, D_sinoFFT, D_filter); + + + ok = runCudaIFFT(dims.iProjAngles, D_sinoFFT, D_sinoData, projPitch, + 0, dims.iProjU, iPaddedDetCount, iHalfFFTSize); + + if (!ok) break; + + D_sinoData += (dims.iProjAngles * projPitch); + } + + freeComplexOnDevice(D_sinoFFT); + + return ok; +} + + +bool FDK(cudaPitchedPtr D_volumeData, + cudaPitchedPtr D_projData, + float fSrcOrigin, float fDetOrigin, + float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, + const SDimensions3D& dims, const float* angles, bool bShortScan) +{ + bool ok; + // Generate filter + // TODO: Check errors + cufftComplex * D_filter; + int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU); + int iHalfFFTSize = calcFFTFourSize(iPaddedDetCount); + + cufftComplex *pHostFilter = new cufftComplex[dims.iProjAngles * iHalfFFTSize]; + memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iHalfFFTSize); + + genFilter(FILTER_RAMLAK, 1.0f, dims.iProjAngles, pHostFilter, iPaddedDetCount, iHalfFFTSize); + + allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_filter); + uploadComplexArrayToDevice(dims.iProjAngles, iHalfFFTSize, pHostFilter, D_filter); + + delete [] pHostFilter; + + + // Perform filtering + + ok = FDK_Filter(D_projData, D_filter, fSrcOrigin, fDetOrigin, + fSrcZ, fDetZ, fDetUSize, fDetVSize, + bShortScan, dims, angles); + + // Clean up filter + freeComplexOnDevice(D_filter); + + + if (!ok) + return false; + + // Perform BP + + ok = FDK_BP(D_volumeData, D_projData, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, + fDetUSize, fDetVSize, dims, angles); + + if (!ok) + return false; + + return true; +} + + +} + +#ifdef STANDALONE +void dumpVolume(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) +{ + float* buf = new float[dims.iVolX*dims.iVolY]; + unsigned int pitch = data.pitch / sizeof(float); + + for (int i = 0; i < dims.iVolZ; ++i) { + cudaMemcpy2D(buf, dims.iVolX*sizeof(float), ((float*)data.ptr)+pitch*dims.iVolY*i, data.pitch, dims.iVolX*sizeof(float), dims.iVolY, cudaMemcpyDeviceToHost); + + char fname[512]; + sprintf(fname, filespec, dims.iVolZ-i-1); + saveImage(fname, dims.iVolY, dims.iVolX, buf, fMin, fMax); + } +} + +void dumpSinograms(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) +{ + float* bufs = new float[dims.iProjAngles*dims.iProjU]; + unsigned int pitch = data.pitch / sizeof(float); + + for (int i = 0; i < dims.iProjV; ++i) { + cudaMemcpy2D(bufs, dims.iProjU*sizeof(float), ((float*)data.ptr)+pitch*dims.iProjAngles*i, data.pitch, dims.iProjU*sizeof(float), dims.iProjAngles, cudaMemcpyDeviceToHost); + + char fname[512]; + sprintf(fname, filespec, i); + saveImage(fname, dims.iProjAngles, dims.iProjU, bufs, fMin, fMax); + } +} + +void dumpProjections(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) +{ + float* bufp = new float[dims.iProjV*dims.iProjU]; + unsigned int pitch = data.pitch / sizeof(float); + + for (int i = 0; i < dims.iProjAngles; ++i) { + for (int j = 0; j < dims.iProjV; ++j) { + cudaMemcpy(bufp+dims.iProjU*j, ((float*)data.ptr)+pitch*dims.iProjAngles*j+pitch*i, dims.iProjU*sizeof(float), cudaMemcpyDeviceToHost); + } + + char fname[512]; + sprintf(fname, filespec, i); + saveImage(fname, dims.iProjV, dims.iProjU, bufp, fMin, fMax); + } +} + + + + +int main() +{ +#if 0 + SDimensions3D dims; + dims.iVolX = 512; + dims.iVolY = 512; + dims.iVolZ = 512; + dims.iProjAngles = 180; + dims.iProjU = 1024; + dims.iProjV = 1024; + dims.iRaysPerDet = 1; + + cudaExtent extentV; + extentV.width = dims.iVolX*sizeof(float); + extentV.height = dims.iVolY; + extentV.depth = dims.iVolZ; + + cudaPitchedPtr volData; // pitch, ptr, xsize, ysize + + cudaMalloc3D(&volData, extentV); + + cudaExtent extentP; + extentP.width = dims.iProjU*sizeof(float); + extentP.height = dims.iProjAngles; + extentP.depth = dims.iProjV; + + cudaPitchedPtr projData; // pitch, ptr, xsize, ysize + + cudaMalloc3D(&projData, extentP); + cudaMemset3D(projData, 0, extentP); + +#if 0 + float* slice = new float[256*256]; + cudaPitchedPtr ptr; + ptr.ptr = slice; + ptr.pitch = 256*sizeof(float); + ptr.xsize = 256*sizeof(float); + ptr.ysize = 256; + + for (unsigned int i = 0; i < 256*256; ++i) + slice[i] = 1.0f; + for (unsigned int i = 0; i < 256; ++i) { + cudaExtent extentS; + extentS.width = dims.iVolX*sizeof(float); + extentS.height = dims.iVolY; + extentS.depth = 1; + cudaPos sp = { 0, 0, 0 }; + cudaPos dp = { 0, 0, i }; + cudaMemcpy3DParms p; + p.srcArray = 0; + p.srcPos = sp; + p.srcPtr = ptr; + p.dstArray = 0; + p.dstPos = dp; + p.dstPtr = volData; + p.extent = extentS; + p.kind = cudaMemcpyHostToDevice; + cudaMemcpy3D(&p); +#if 0 + if (i == 128) { + for (unsigned int j = 0; j < 256*256; ++j) + slice[j] = 0.0f; + } +#endif + } +#endif + + SConeProjection angle[180]; + angle[0].fSrcX = -1536; + angle[0].fSrcY = 0; + angle[0].fSrcZ = 0; + + angle[0].fDetSX = 1024; + angle[0].fDetSY = -512; + angle[0].fDetSZ = 512; + + angle[0].fDetUX = 0; + angle[0].fDetUY = 1; + angle[0].fDetUZ = 0; + + angle[0].fDetVX = 0; + angle[0].fDetVY = 0; + angle[0].fDetVZ = -1; + +#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0) + for (int i = 1; i < 180; ++i) { + angle[i] = angle[0]; + ROTATE0(Src, i, i*2*M_PI/180); + ROTATE0(DetS, i, i*2*M_PI/180); + ROTATE0(DetU, i, i*2*M_PI/180); + ROTATE0(DetV, i, i*2*M_PI/180); + } +#undef ROTATE0 + + astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f); + + //dumpSinograms("sino%03d.png", projData, dims, 0, 512); + //dumpProjections("proj%03d.png", projData, dims, 0, 512); + + astraCUDA3d::zeroVolumeData(volData, dims); + + float* angles = new float[dims.iProjAngles]; + for (int i = 0; i < 180; ++i) + angles[i] = i*2*M_PI/180; + + astraCUDA3d::FDK(volData, projData, 1536, 512, 0, 0, dims, angles); + + dumpVolume("vol%03d.png", volData, dims, -20, 100); + + +#else + + SDimensions3D dims; + dims.iVolX = 1000; + dims.iVolY = 999; + dims.iVolZ = 500; + dims.iProjAngles = 376; + dims.iProjU = 1024; + dims.iProjV = 524; + dims.iRaysPerDet = 1; + + float* angles = new float[dims.iProjAngles]; + for (int i = 0; i < dims.iProjAngles; ++i) + angles[i] = -i*(M_PI)/360; + + cudaPitchedPtr volData = astraCUDA3d::allocateVolumeData(dims); + cudaPitchedPtr projData = astraCUDA3d::allocateProjectionData(dims); + astraCUDA3d::zeroProjectionData(projData, dims); + astraCUDA3d::zeroVolumeData(volData, dims); + + timeval t; + tic(t); + + for (int i = 0; i < dims.iProjAngles; ++i) { + char fname[256]; + sprintf(fname, "/home/wpalenst/tmp/Elke/proj%04d.png", i); + unsigned int w,h; + float* bufp = loadImage(fname, w,h); + + int pitch = projData.pitch / sizeof(float); + for (int j = 0; j < dims.iProjV; ++j) { + cudaMemcpy(((float*)projData.ptr)+dims.iProjAngles*pitch*j+pitch*i, bufp+dims.iProjU*j, dims.iProjU*sizeof(float), cudaMemcpyHostToDevice); + } + + delete[] bufp; + } + printf("Load time: %f\n", toc(t)); + + //dumpSinograms("sino%03d.png", projData, dims, -8.0f, 256.0f); + //astraCUDA3d::FDK(volData, projData, 7350, 62355, 0, 10, dims, angles); + //astraCUDA3d::FDK(volData, projData, 7350, -380, 0, 10, dims, angles); + + tic(t); + + astraCUDA3d::FDK(volData, projData, 7383.29867, 0, 0, 10, dims, angles); + + printf("FDK time: %f\n", toc(t)); + tic(t); + + dumpVolume("vol%03d.png", volData, dims, -65.9f, 200.0f); + //dumpVolume("vol%03d.png", volData, dims, 0.0f, 256.0f); + printf("Save time: %f\n", toc(t)); + +#endif + + +} +#endif |