diff options
author | Willem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl> | 2017-10-12 15:17:10 +0200 |
---|---|---|
committer | Willem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl> | 2017-10-12 15:17:10 +0200 |
commit | 08df6c4167118e0a3b5f128078f9c13f206a171a (patch) | |
tree | 0883b5967008e83fb1ae3f0a00bd675bba7116b4 /include/astra/ParallelBeamLineKernelProjector2D.inl | |
parent | 5ad3d86b6e2c39de7465186ec8702053a82b6152 (diff) | |
download | astra-08df6c4167118e0a3b5f128078f9c13f206a171a.tar.gz astra-08df6c4167118e0a3b5f128078f9c13f206a171a.tar.bz2 astra-08df6c4167118e0a3b5f128078f9c13f206a171a.tar.xz astra-08df6c4167118e0a3b5f128078f9c13f206a171a.zip |
Fix some warnings
Diffstat (limited to 'include/astra/ParallelBeamLineKernelProjector2D.inl')
-rw-r--r-- | include/astra/ParallelBeamLineKernelProjector2D.inl | 179 |
1 files changed, 89 insertions, 90 deletions
diff --git a/include/astra/ParallelBeamLineKernelProjector2D.inl b/include/astra/ParallelBeamLineKernelProjector2D.inl index e516fe1..7db0a34 100644 --- a/include/astra/ParallelBeamLineKernelProjector2D.inl +++ b/include/astra/ParallelBeamLineKernelProjector2D.inl @@ -49,94 +49,94 @@ void CParallelBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int //---------------------------------------------------------------------------------------- -// PROJECT BLOCK - vector projection geometry -// -// Kernel limitations: isotropic pixels (PixelLengthX == PixelLengthY) -// -// For each angle/detector pair: -// -// Let D=(Dx,Dy) denote the centre of the detector (point) in volume coordinates, and -// let R=(Rx,Ry) denote the direction of the ray (vector). -// -// For mainly vertical rays (|Rx|<=|Ry|), -// let E=(Ex,Ey) denote the centre of the most upper left pixel: -// E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), -// and let F=(Fx,Fy) denote a vector to the next pixel -// F = (PixelLengthX, 0) -// -// The intersection of the ray (D+aR) with the centre line of the upper row of pixels (E+bF) is -// { Dx + a*Rx = Ex + b*Fx -// { Dy + a*Ry = Ey + b*Fy -// Solving for (a,b) results in: -// a = (Ey + b*Fy - Dy)/Ry -// = (Ey - Dy)/Ry -// b = (Dx + a*Rx - Ex)/Fx -// = (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx -// -// Define c as the x-value of the intersection of the ray with the upper row in pixel coordinates. -// c = b -// -// The intersection of the ray (D+aR) with the centre line of the second row of pixels (E'+bF) with -// E'=(WindowMinX + PixelLengthX/2, WindowMaxY - 3*PixelLengthY/2) -// expressed in x-value pixel coordinates is -// c' = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx. -// And thus: -// deltac = c' - c = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx - (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx -// = [(Ey' - Dy)*Rx/Ry - (Ey - Dy)*Rx/Ry]/Fx -// = [Ey' - Ey]*(Rx/Ry)/Fx -// = [Ey' - Ey]*(Rx/Ry)/Fx -// = -PixelLengthY*(Rx/Ry)/Fx. -// -// Given c on a certain row, its closest pixel (col), and the distance (offset) to it, can be found: -// col = floor(c+1/2) -// offset = c - col -// -// The index of this pixel is -// volumeIndex = row * colCount + col -// -// The projection kernel is defined by -// -// _____ LengthPerRow -// /| | |\ -// / | | | \ -// __/ | | | \__ 0 -// -T -S 0 S T -// -// with S = 1/2 - 1/2*|Rx/Ry|, T = 1/2 + 1/2*|Rx/Ry|, and LengthPerRow = pixelLengthX * sqrt(Rx^2+Ry^2) / |Ry| -// -// And thus -// { (offset+T)/(T-S) * LengthPerRow if -T <= offset < S -// W_(rayIndex,volIndex) = { LengthPerRow if -S <= offset <= S -// { (offset-S)/(T-S) * LengthPerRow if S < offset <= T -// -// If -T <= offset < S, the weight for the pixel directly to the left is -// W_(rayIndex,volIndex-1) = LengthPerRow - (offset+T)/(T-S) * LengthPerRow, -// and if S < offset <= T, the weight for the pixel directly to the right is -// W_(rayIndex,volIndex+1) = LengthPerRow - (offset-S)/(T-S) * LengthPerRow. -// -// -// Mainly horizontal rays (|Rx|<=|Ry|) are handled in a similar fashion: -// -// E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), -// F = (0, -PixelLengthX) -// -// a = (Ex + b*Fx - Dx)/Rx = (Ex - Dx)/Rx -// b = (Dy + a*Ry - Ey)/Fy = (Dy + (Ex - Dx)*Ry/Rx - Ey)/Fy -// r = b -// deltar = PixelLengthX*(Ry/Rx)/Fy. -// row = floor(r+1/2) -// offset = r - row -// S = 1/2 - 1/2*|Ry/Rx| -// T = 1/2 + 1/2*|Ry/Rx| -// LengthPerCol = pixelLengthY * sqrt(Rx^2+Ry^2) / |Rx| -// -// { (offset+T)/(T-S) * LengthPerCol if -T <= offset < S -// W_(rayIndex,volIndex) = { LengthPerCol if -S <= offset <= S -// { (offset-S)/(T-S) * LengthPerCol if S < offset <= T -// -// W_(rayIndex,volIndex-colcount) = LengthPerCol - (offset+T)/(T-S) * LengthPerCol -// W_(rayIndex,volIndex+colcount) = LengthPerCol - (offset-S)/(T-S) * LengthPerCol -// +/* PROJECT BLOCK - vector projection geometry + + Kernel limitations: isotropic pixels (PixelLengthX == PixelLengthY) + + For each angle/detector pair: + + Let D=(Dx,Dy) denote the centre of the detector (point) in volume coordinates, and + let R=(Rx,Ry) denote the direction of the ray (vector). + + For mainly vertical rays (|Rx|<=|Ry|), + let E=(Ex,Ey) denote the centre of the most upper left pixel: + E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), + and let F=(Fx,Fy) denote a vector to the next pixel + F = (PixelLengthX, 0) + + The intersection of the ray (D+aR) with the centre line of the upper row of pixels (E+bF) is + { Dx + a*Rx = Ex + b*Fx + { Dy + a*Ry = Ey + b*Fy + Solving for (a,b) results in: + a = (Ey + b*Fy - Dy)/Ry + = (Ey - Dy)/Ry + b = (Dx + a*Rx - Ex)/Fx + = (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx + + Define c as the x-value of the intersection of the ray with the upper row in pixel coordinates. + c = b + + The intersection of the ray (D+aR) with the centre line of the second row of pixels (E'+bF) with + E'=(WindowMinX + PixelLengthX/2, WindowMaxY - 3*PixelLengthY/2) + expressed in x-value pixel coordinates is + c' = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx. + And thus: + deltac = c' - c = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx - (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx + = [(Ey' - Dy)*Rx/Ry - (Ey - Dy)*Rx/Ry]/Fx + = [Ey' - Ey]*(Rx/Ry)/Fx + = [Ey' - Ey]*(Rx/Ry)/Fx + = -PixelLengthY*(Rx/Ry)/Fx. + + Given c on a certain row, its closest pixel (col), and the distance (offset) to it, can be found: + col = floor(c+1/2) + offset = c - col + + The index of this pixel is + volumeIndex = row * colCount + col + + The projection kernel is defined by + + _____ LengthPerRow + /| | |\ + / | | | \ + __/ | | | \__ 0 + -T -S 0 S T + + with S = 1/2 - 1/2*|Rx/Ry|, T = 1/2 + 1/2*|Rx/Ry|, and LengthPerRow = pixelLengthX * sqrt(Rx^2+Ry^2) / |Ry| + + And thus + { (offset+T)/(T-S) * LengthPerRow if -T <= offset < S + W_(rayIndex,volIndex) = { LengthPerRow if -S <= offset <= S + { (offset-S)/(T-S) * LengthPerRow if S < offset <= T + + If -T <= offset < S, the weight for the pixel directly to the left is + W_(rayIndex,volIndex-1) = LengthPerRow - (offset+T)/(T-S) * LengthPerRow, + and if S < offset <= T, the weight for the pixel directly to the right is + W_(rayIndex,volIndex+1) = LengthPerRow - (offset-S)/(T-S) * LengthPerRow. + + + Mainly horizontal rays (|Rx|<=|Ry|) are handled in a similar fashion: + + E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), + F = (0, -PixelLengthX) + + a = (Ex + b*Fx - Dx)/Rx = (Ex - Dx)/Rx + b = (Dy + a*Ry - Ey)/Fy = (Dy + (Ex - Dx)*Ry/Rx - Ey)/Fy + r = b + deltar = PixelLengthX*(Ry/Rx)/Fy. + row = floor(r+1/2) + offset = r - row + S = 1/2 - 1/2*|Ry/Rx| + T = 1/2 + 1/2*|Ry/Rx| + LengthPerCol = pixelLengthY * sqrt(Rx^2+Ry^2) / |Rx| + + { (offset+T)/(T-S) * LengthPerCol if -T <= offset < S + W_(rayIndex,volIndex) = { LengthPerCol if -S <= offset <= S + { (offset-S)/(T-S) * LengthPerCol if S < offset <= T + + W_(rayIndex,volIndex-colcount) = LengthPerCol - (offset+T)/(T-S) * LengthPerCol + W_(rayIndex,volIndex+colcount) = LengthPerCol - (offset-S)/(T-S) * LengthPerCol +*/ template <typename Policy> void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { @@ -155,7 +155,6 @@ void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, i const float32 inv_pixelLengthY = 1.0f / pixelLengthY; const int colCount = m_pVolumeGeometry->getGridColCount(); const int rowCount = m_pVolumeGeometry->getGridRowCount(); - const int detCount = pVecProjectionGeometry->getDetectorCount(); // loop angles for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { @@ -163,7 +162,7 @@ void CParallelBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, i // variables float32 Dx, Dy, Ex, Ey, S, T, weight, c, r, deltac, deltar, offset; float32 RxOverRy, RyOverRx, lengthPerRow, lengthPerCol, invTminSTimesLengthPerRow, invTminSTimesLengthPerCol; - int iVolumeIndex, iRayIndex, row, col, iDetector; + int iVolumeIndex, iRayIndex, row, col; const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; |