summaryrefslogtreecommitdiffstats
path: root/tests/python/test_line2d.py
diff options
context:
space:
mode:
authorWillem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl>2019-09-27 15:16:26 +0200
committerWillem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl>2019-09-27 15:16:26 +0200
commit54af7e8e22a3f1c9d90b13291b28d39778c05564 (patch)
tree260310b16d624261bb80f82979af27750022259b /tests/python/test_line2d.py
parent1fec36f7ccadd5f7dcf2bb59b0654dc53653b0f3 (diff)
parentb629db207bb263495bfff2e61ce189ccac27b4b9 (diff)
downloadastra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.gz
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.bz2
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.tar.xz
astra-54af7e8e22a3f1c9d90b13291b28d39778c05564.zip
Merge branch 'consistent_scaling'
Diffstat (limited to 'tests/python/test_line2d.py')
-rw-r--r--tests/python/test_line2d.py180
1 files changed, 103 insertions, 77 deletions
diff --git a/tests/python/test_line2d.py b/tests/python/test_line2d.py
index d04ffb8..e5d8f2b 100644
--- a/tests/python/test_line2d.py
+++ b/tests/python/test_line2d.py
@@ -7,9 +7,9 @@ import pylab
# Display sinograms with mismatch on test failure
DISPLAY=False
-NONUNITDET=False
-OBLIQUE=False
-FLEXVOL=False
+NONUNITDET=True
+OBLIQUE=True
+FLEXVOL=True
NONSQUARE=False # non-square pixels not supported yet by most projectors
# Round interpolation weight to 8 bits to emulate CUDA texture unit precision
@@ -20,15 +20,8 @@ nloops = 50
seed = 123
-# FAILURES:
-# fan/cuda with flexible volume
-# detweight for fan/cuda
-# fan/strip relatively high numerical errors?
-# parvec/line+linear for oblique
-
-# INCONSISTENCY:
-# effective_detweight vs norm(detu) in line/linear (oblique)
-
+# KNOWN FAILURES:
+# fan/strip relatively high numerical errors around 45 degrees
# return length of intersection of the line through points src = (x,y)
@@ -454,23 +447,15 @@ class Test2DKernel(unittest.TestCase):
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
- try:
- detweight = pg['DetectorWidth']
- except KeyError:
- if 'fan' not in type:
- detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
- else:
- detweight = np.linalg.norm(pg['Vectors'][i//pg['DetectorCount'],4:6], ord=2)
-
# We compute line intersections with slightly bigger (cw) and
# smaller (aw) rectangles, and see if the kernel falls
# between these two values.
(aw,bw,cw) = intersect_line_rectangle_interval(src, det,
xmin, xmax, ymin, ymax,
1e-3)
- a[i] = aw * detweight
- b[i] = bw * detweight
- c[i] = cw * detweight
+ a[i] = aw
+ b[i] = bw
+ c[i] = cw
a = a.reshape(astra.functions.geom_size(pg))
b = b.reshape(astra.functions.geom_size(pg))
c = c.reshape(astra.functions.geom_size(pg))
@@ -494,17 +479,9 @@ class Test2DKernel(unittest.TestCase):
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
(xd, yd) = det - src
- try:
- detweight = pg['DetectorWidth']
- except KeyError:
- if 'fan' not in type:
- detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
- else:
- detweight = np.linalg.norm(pg['Vectors'][i//pg['DetectorCount'],4:6], ord=2)
-
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
- length = math.sqrt(1.0 + abs(yd/xd)**2)
+ length = math.sqrt(1.0 + abs(yd/xd)**2) * pixsize[0]
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
@@ -512,9 +489,9 @@ class Test2DKernel(unittest.TestCase):
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
- l += w * length * pixsize[0] * detweight
+ l += w * length
else:
- length = math.sqrt(1.0 + abs(xd/yd)**2)
+ length = math.sqrt(1.0 + abs(xd/yd)**2) * pixsize[1]
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
@@ -522,7 +499,7 @@ class Test2DKernel(unittest.TestCase):
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
- l += w * length * pixsize[1] * detweight
+ l += w * length
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
@@ -532,21 +509,26 @@ class Test2DKernel(unittest.TestCase):
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
- elif proj_type == 'distance_driven':
+ elif proj_type == 'distance_driven' and 'par' in type:
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
- (xd, yd) = center[1] - center[0]
+ (src, det) = center
+ try:
+ detweight = pg['DetectorWidth']
+ except KeyError:
+ detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
+ (xd, yd) = det - src
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
- l += intersect_ray_vertical_segment(edge1, edge2, x, y_seg) * pixsize[0]
+ l += intersect_ray_vertical_segment(edge1, edge2, x, y_seg) * pixsize[0] / detweight
else:
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
- l += intersect_ray_horizontal_segment(edge1, edge2, y, x_seg) * pixsize[1]
+ l += intersect_ray_horizontal_segment(edge1, edge2, y, x_seg) * pixsize[1] / detweight
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
@@ -560,6 +542,7 @@ class Test2DKernel(unittest.TestCase):
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
+ detweight = effective_detweight(src, det, edge2[1] - edge1[1])
det_dist = np.linalg.norm(src-det, ord=2)
l = 0.0
for j in range(rect_min[0], rect_max[0]):
@@ -570,7 +553,7 @@ class Test2DKernel(unittest.TestCase):
ymin = origin[1] + (+0.5 * shape[1] - k - 1) * pixsize[1]
ymax = origin[1] + (+0.5 * shape[1] - k) * pixsize[1]
ycen = 0.5 * (ymin + ymax)
- scale = det_dist / np.linalg.norm( src - np.array((xcen,ycen)), ord=2 )
+ scale = det_dist / (np.linalg.norm( src - np.array((xcen,ycen)), ord=2 ) * detweight)
w = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax)
l += w * scale
a[i] = l
@@ -578,14 +561,20 @@ class Test2DKernel(unittest.TestCase):
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
- TOL = 8e-3
+ # BUG: Known bug in fan/strip code around 45 degree projections causing larger errors than desirable
+ TOL = 4e-2
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
elif proj_type == 'strip':
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
- a[i] = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax)
+ (src, det) = center
+ try:
+ detweight = pg['DetectorWidth']
+ except KeyError:
+ detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
+ a[i] = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax) / detweight
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
@@ -594,46 +583,83 @@ class Test2DKernel(unittest.TestCase):
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
self.assertFalse(x > TOL)
+ else:
+ raise RuntimeError("Unsupported projector")
- def multi_test(self, type, proj_type):
- np.random.seed(seed)
- for _ in range(nloops):
- self.single_test(type, proj_type)
-
- def test_par(self):
- self.multi_test('parallel', 'line')
- def test_par_linear(self):
- self.multi_test('parallel', 'linear')
- def test_par_cuda(self):
- self.multi_test('parallel', 'cuda')
- def test_par_dd(self):
- self.multi_test('parallel', 'distance_driven')
- def test_par_strip(self):
- self.multi_test('parallel', 'strip')
- def test_fan(self):
- self.multi_test('fanflat', 'line')
- def test_fan_strip(self):
- self.multi_test('fanflat', 'strip')
- def test_fan_cuda(self):
- self.multi_test('fanflat', 'cuda')
- def test_parvec(self):
- self.multi_test('parallel_vec', 'line')
- def test_parvec_linear(self):
- self.multi_test('parallel_vec', 'linear')
- def test_parvec_dd(self):
- self.multi_test('parallel_vec', 'distance_driven')
- def test_parvec_strip(self):
- self.multi_test('parallel_vec', 'strip')
- def test_parvec_cuda(self):
- self.multi_test('parallel_vec', 'cuda')
- def test_fanvec(self):
- self.multi_test('fanflat_vec', 'line')
- def test_fanvec_cuda(self):
- self.multi_test('fanflat_vec', 'cuda')
+ def single_test_adjoint(self, type, proj_type):
+ shape = np.random.randint(*range2d, size=2)
+ if FLEXVOL:
+ if not NONSQUARE:
+ pixsize = np.array([0.5, 0.5]) + np.random.random()
+ else:
+ pixsize = 0.5 + np.random.random(size=2)
+ origin = 10 * np.random.random(size=2)
+ else:
+ pixsize = (1.,1.)
+ origin = (0.,0.)
+ vg = astra.create_vol_geom(shape[1], shape[0],
+ origin[0] - 0.5 * shape[0] * pixsize[0],
+ origin[0] + 0.5 * shape[0] * pixsize[0],
+ origin[1] - 0.5 * shape[1] * pixsize[1],
+ origin[1] + 0.5 * shape[1] * pixsize[1])
+ if type == 'parallel':
+ pg = gen_random_geometry_parallel()
+ projector_id = astra.create_projector(proj_type, pg, vg)
+ elif type == 'parallel_vec':
+ pg = gen_random_geometry_parallel_vec()
+ projector_id = astra.create_projector(proj_type, pg, vg)
+ elif type == 'fanflat':
+ pg = gen_random_geometry_fanflat()
+ projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
+ elif type == 'fanflat_vec':
+ pg = gen_random_geometry_fanflat_vec()
+ projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
+ for i in range(5):
+ X = np.random.random((shape[1], shape[0]))
+ Y = np.random.random(astra.geom_size(pg))
+
+ sinogram_id, fX = astra.create_sino(X, projector_id)
+ bp_id, fTY = astra.create_backprojection(Y, projector_id)
+
+ astra.data2d.delete(sinogram_id)
+ astra.data2d.delete(bp_id)
+
+ da = np.dot(fX.ravel(), Y.ravel())
+ db = np.dot(X.ravel(), fTY.ravel())
+ m = np.abs(da - db)
+ TOL = 1e-3 if 'cuda' not in proj_type else 1e-1
+ if m / da >= TOL:
+ print(vg)
+ print(pg)
+ print(m/da, da/db, da, db)
+ self.assertTrue(m / da < TOL)
+ astra.projector.delete(projector_id)
+ def multi_test(self, type, proj_type):
+ np.random.seed(seed)
+ for _ in range(nloops):
+ self.single_test(type, proj_type)
+ def multi_test_adjoint(self, type, proj_type):
+ np.random.seed(seed)
+ for _ in range(nloops):
+ self.single_test_adjoint(type, proj_type)
+
+__combinations = { 'parallel': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
+ 'parallel_vec': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
+ 'fanflat': [ 'line', 'strip', 'cuda' ],
+ 'fanflat_vec': [ 'line', 'cuda' ] }
+
+for k, l in __combinations.items():
+ for v in l:
+ def f(k,v):
+ return lambda self: self.multi_test(k, v)
+ def f_adj(k,v):
+ return lambda self: self.multi_test_adjoint(k, v)
+ setattr(Test2DKernel, 'test_' + k + '_' + v, f(k,v))
+ setattr(Test2DKernel, 'test_' + k + '_' + v + '_adjoint', f_adj(k,v))
if __name__ == '__main__':
unittest.main()