summaryrefslogtreecommitdiffstats
path: root/cuda/2d/em.cu
diff options
context:
space:
mode:
Diffstat (limited to 'cuda/2d/em.cu')
-rw-r--r--cuda/2d/em.cu262
1 files changed, 262 insertions, 0 deletions
diff --git a/cuda/2d/em.cu b/cuda/2d/em.cu
new file mode 100644
index 0000000..74d1bbf
--- /dev/null
+++ b/cuda/2d/em.cu
@@ -0,0 +1,262 @@
+/*
+-----------------------------------------------------------------------
+Copyright 2012 iMinds-Vision Lab, University of Antwerp
+
+Contact: astra@ua.ac.be
+Website: http://astra.ua.ac.be
+
+
+This file is part of the
+All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
+
+The ASTRA Toolbox is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+The ASTRA Toolbox is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+
+-----------------------------------------------------------------------
+$Id$
+*/
+
+#include <cstdio>
+#include <cassert>
+
+#include "em.h"
+#include "util.h"
+#include "arith.h"
+
+#ifdef STANDALONE
+#include "testutil.h"
+#endif
+
+namespace astraCUDA {
+
+
+// TODO: ensure non-negativity somewhere??
+
+
+EM::EM()
+{
+ D_projData = 0;
+ D_tmpData = 0;
+ D_pixelWeight = 0;
+
+}
+
+
+EM::~EM()
+{
+ reset();
+}
+
+void EM::reset()
+{
+ cudaFree(D_projData);
+ cudaFree(D_tmpData);
+ cudaFree(D_pixelWeight);
+
+ D_projData = 0;
+ D_tmpData = 0;
+ D_pixelWeight = 0;
+
+ ReconAlgo::reset();
+}
+
+
+bool EM::init()
+{
+ allocateVolume(D_pixelWeight, dims.iVolWidth+2, dims.iVolHeight+2, pixelPitch);
+ zeroVolume(D_pixelWeight, pixelPitch, dims.iVolWidth+2, dims.iVolHeight+2);
+
+ allocateVolume(D_tmpData, dims.iVolWidth+2, dims.iVolHeight+2, tmpPitch);
+ zeroVolume(D_tmpData, tmpPitch, dims.iVolWidth+2, dims.iVolHeight+2);
+
+ allocateVolume(D_projData, dims.iProjDets+2, dims.iProjAngles, projPitch);
+ zeroVolume(D_projData, projPitch, dims.iProjDets+2, dims.iProjAngles);
+
+ // We can't precompute pixelWeights when using a volume mask
+#if 0
+ if (!useVolumeMask)
+#endif
+ precomputeWeights();
+
+ // TODO: check if allocations succeeded
+ return true;
+}
+
+bool EM::precomputeWeights()
+{
+ zeroVolume(D_pixelWeight, pixelPitch, dims.iVolWidth+2, dims.iVolHeight+2);
+#if 0
+ if (useSinogramMask) {
+ callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch);
+ } else
+#endif
+ {
+ processVol<opSet, SINO>(D_projData, 1.0f, projPitch, dims.iProjDets, dims.iProjAngles);
+ callBP(D_pixelWeight, pixelPitch, D_projData, projPitch);
+ }
+ processVol<opInvert, VOL>(D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);
+
+#if 0
+ if (useVolumeMask) {
+ // scale pixel weights with mask to zero out masked pixels
+ processVol<opMul, VOL>(D_pixelWeight, D_maskData, pixelPitch, dims.iVolWidth, dims.iVolHeight);
+ }
+#endif
+
+ return true;
+}
+
+bool EM::iterate(unsigned int iterations)
+{
+ shouldAbort = false;
+
+#if 0
+ if (useVolumeMask)
+ precomputeWeights();
+#endif
+
+ // iteration
+ for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) {
+
+ // Do FP of volumeData
+ zeroVolume(D_projData, projPitch, dims.iProjDets+2, dims.iProjAngles);
+ callFP(D_volumeData, volumePitch, D_projData, projPitch, 1.0f);
+
+ // Divide sinogram by FP (into projData)
+ processVol<opDividedBy, SINO>(D_projData, D_sinoData, projPitch, dims.iProjDets, dims.iProjAngles);
+
+ // Do BP of projData into tmpData
+ zeroVolume(D_tmpData, tmpPitch, dims.iVolWidth+2, dims.iVolHeight+2);
+ callBP(D_tmpData, tmpPitch, D_projData, projPitch);
+
+ // Multiply volumeData with tmpData divided by pixel weights
+ processVol<opMul2, VOL>(D_volumeData, D_tmpData, D_pixelWeight, pixelPitch, dims.iVolWidth, dims.iVolHeight);
+
+ }
+
+ return true;
+}
+
+float EM::computeDiffNorm()
+{
+ // copy sinogram to projection data
+ cudaMemcpy2D(D_projData, sizeof(float)*projPitch, D_sinoData, sizeof(float)*sinoPitch, sizeof(float)*(dims.iProjDets+2), dims.iProjAngles, cudaMemcpyDeviceToDevice);
+
+ // do FP, subtracting projection from sinogram
+ if (useVolumeMask) {
+ cudaMemcpy2D(D_tmpData, sizeof(float)*tmpPitch, D_volumeData, sizeof(float)*volumePitch, sizeof(float)*(dims.iVolWidth+2), dims.iVolHeight+2, cudaMemcpyDeviceToDevice);
+ processVol<opMul, VOL>(D_tmpData, D_maskData, tmpPitch, dims.iVolWidth, dims.iVolHeight);
+ callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
+ } else {
+ callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
+ }
+
+
+ // compute norm of D_projData
+
+ float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles, 1, 0);
+
+ return sqrt(s);
+}
+
+
+bool doEM(float* D_volumeData, unsigned int volumePitch,
+ float* D_sinoData, unsigned int sinoPitch,
+ const SDimensions& dims, const float* angles,
+ const float* TOffsets, unsigned int iterations)
+{
+ EM em;
+ bool ok = true;
+
+ ok &= em.setGeometry(dims, angles);
+ if (TOffsets)
+ ok &= em.setTOffsets(TOffsets);
+
+ if (!ok)
+ return false;
+
+ ok = em.init();
+ if (!ok)
+ return false;
+
+ ok &= em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
+ if (!ok)
+ return false;
+
+ ok = em.iterate(iterations);
+
+ return ok;
+}
+
+}
+
+#ifdef STANDALONE
+
+using namespace astraCUDA;
+
+int main()
+{
+ float* D_volumeData;
+ float* D_sinoData;
+
+ SDimensions dims;
+ dims.iVolWidth = 1024;
+ dims.iVolHeight = 1024;
+ dims.iProjAngles = 512;
+ dims.iProjDets = 1536;
+ dims.fDetScale = 1.0f;
+ dims.iRaysPerDet = 1;
+ unsigned int volumePitch, sinoPitch;
+
+ allocateVolume(D_volumeData, dims.iVolWidth+2, dims.iVolHeight+2, volumePitch);
+ zeroVolume(D_volumeData, volumePitch, dims.iVolWidth+2, dims.iVolHeight+2);
+ printf("pitch: %u\n", volumePitch);
+
+ allocateVolume(D_sinoData, dims.iProjDets+2, dims.iProjAngles, sinoPitch);
+ zeroVolume(D_sinoData, sinoPitch, dims.iProjDets+2, dims.iProjAngles);
+ printf("pitch: %u\n", sinoPitch);
+
+ unsigned int y, x;
+ float* sino = loadImage("sino.png", y, x);
+
+ float* img = new float[dims.iVolWidth*dims.iVolHeight];
+
+ copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
+
+ float* angle = new float[dims.iProjAngles];
+
+ for (unsigned int i = 0; i < dims.iProjAngles; ++i)
+ angle[i] = i*(M_PI/dims.iProjAngles);
+
+ EM em;
+
+ em.setGeometry(dims, angle);
+ em.init();
+
+ // TODO: Initialize D_volumeData with an unfiltered backprojection
+
+ em.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
+
+ em.iterate(25);
+
+
+ delete[] angle;
+
+ copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
+
+ saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
+
+ return 0;
+}
+
+#endif