summaryrefslogtreecommitdiffstats
path: root/lib/include
diff options
context:
space:
mode:
Diffstat (limited to 'lib/include')
-rw-r--r--lib/include/rapidxml/rapidxml.hpp2596
-rw-r--r--lib/include/rapidxml/rapidxml_print.hpp424
-rw-r--r--lib/include/tnt/jama_cholesky.h258
-rw-r--r--lib/include/tnt/jama_eig.h1034
-rw-r--r--lib/include/tnt/jama_lu.h323
-rw-r--r--lib/include/tnt/jama_qr.h326
-rw-r--r--lib/include/tnt/jama_svd.h543
-rw-r--r--lib/include/tnt/tnt.h64
-rw-r--r--lib/include/tnt/tnt_array1d.h278
-rw-r--r--lib/include/tnt/tnt_array1d_utils.h230
-rw-r--r--lib/include/tnt/tnt_array2d.h315
-rw-r--r--lib/include/tnt/tnt_array2d_utils.h287
-rw-r--r--lib/include/tnt/tnt_array3d.h296
-rw-r--r--lib/include/tnt/tnt_array3d_utils.h236
-rw-r--r--lib/include/tnt/tnt_cmat.h580
-rw-r--r--lib/include/tnt/tnt_fortran_array1d.h267
-rw-r--r--lib/include/tnt/tnt_fortran_array1d_utils.h242
-rw-r--r--lib/include/tnt/tnt_fortran_array2d.h225
-rw-r--r--lib/include/tnt/tnt_fortran_array2d_utils.h236
-rw-r--r--lib/include/tnt/tnt_fortran_array3d.h223
-rw-r--r--lib/include/tnt/tnt_fortran_array3d_utils.h249
-rw-r--r--lib/include/tnt/tnt_i_refvec.h243
-rw-r--r--lib/include/tnt/tnt_math_utils.h34
-rw-r--r--lib/include/tnt/tnt_sparse_matrix_csr.h103
-rw-r--r--lib/include/tnt/tnt_stopwatch.h95
-rw-r--r--lib/include/tnt/tnt_subscript.h54
-rw-r--r--lib/include/tnt/tnt_vec.h404
-rw-r--r--lib/include/tnt/tnt_version.h39
28 files changed, 10204 insertions, 0 deletions
diff --git a/lib/include/rapidxml/rapidxml.hpp b/lib/include/rapidxml/rapidxml.hpp
new file mode 100644
index 0000000..ae91e08
--- /dev/null
+++ b/lib/include/rapidxml/rapidxml.hpp
@@ -0,0 +1,2596 @@
+#ifndef RAPIDXML_HPP_INCLUDED
+#define RAPIDXML_HPP_INCLUDED
+
+// Copyright (C) 2006, 2009 Marcin Kalicinski
+// Version 1.13
+// Revision $DateTime: 2009/05/13 01:46:17 $
+//! \file rapidxml.hpp This file contains rapidxml parser and DOM implementation
+
+// If standard library is disabled, user must provide implementations of required functions and typedefs
+#if !defined(RAPIDXML_NO_STDLIB)
+ #include <cstdlib> // For std::size_t
+ #include <cassert> // For assert
+ #include <new> // For placement new
+#endif
+
+// On MSVC, disable "conditional expression is constant" warning (level 4).
+// This warning is almost impossible to avoid with certain types of templated code
+#ifdef _MSC_VER
+ #pragma warning(push)
+ #pragma warning(disable:4127) // Conditional expression is constant
+#endif
+
+///////////////////////////////////////////////////////////////////////////
+// RAPIDXML_PARSE_ERROR
+
+#if defined(RAPIDXML_NO_EXCEPTIONS)
+
+#define RAPIDXML_PARSE_ERROR(what, where) { parse_error_handler(what, where); assert(0); }
+
+namespace rapidxml
+{
+ //! When exceptions are disabled by defining RAPIDXML_NO_EXCEPTIONS,
+ //! this function is called to notify user about the error.
+ //! It must be defined by the user.
+ //! <br><br>
+ //! This function cannot return. If it does, the results are undefined.
+ //! <br><br>
+ //! A very simple definition might look like that:
+ //! <pre>
+ //! void %rapidxml::%parse_error_handler(const char *what, void *where)
+ //! {
+ //! std::cout << "Parse error: " << what << "\n";
+ //! std::abort();
+ //! }
+ //! </pre>
+ //! \param what Human readable description of the error.
+ //! \param where Pointer to character data where error was detected.
+ void parse_error_handler(const char *what, void *where);
+}
+
+#else
+
+#include <exception> // For std::exception
+
+#define RAPIDXML_PARSE_ERROR(what, where) throw parse_error(what, where)
+
+namespace rapidxml
+{
+
+ //! Parse error exception.
+ //! This exception is thrown by the parser when an error occurs.
+ //! Use what() function to get human-readable error message.
+ //! Use where() function to get a pointer to position within source text where error was detected.
+ //! <br><br>
+ //! If throwing exceptions by the parser is undesirable,
+ //! it can be disabled by defining RAPIDXML_NO_EXCEPTIONS macro before rapidxml.hpp is included.
+ //! This will cause the parser to call rapidxml::parse_error_handler() function instead of throwing an exception.
+ //! This function must be defined by the user.
+ //! <br><br>
+ //! This class derives from <code>std::exception</code> class.
+ class parse_error: public std::exception
+ {
+
+ public:
+
+ //! Constructs parse error
+ parse_error(const char *what, void *where)
+ : m_what(what)
+ , m_where(where)
+ {
+ }
+
+ //! Gets human readable description of error.
+ //! \return Pointer to null terminated description of the error.
+ virtual const char *what() const throw()
+ {
+ return m_what;
+ }
+
+ //! Gets pointer to character data where error happened.
+ //! Ch should be the same as char type of xml_document that produced the error.
+ //! \return Pointer to location within the parsed string where error occured.
+ template<class Ch>
+ Ch *where() const
+ {
+ return reinterpret_cast<Ch *>(m_where);
+ }
+
+ private:
+
+ const char *m_what;
+ void *m_where;
+
+ };
+}
+
+#endif
+
+///////////////////////////////////////////////////////////////////////////
+// Pool sizes
+
+#ifndef RAPIDXML_STATIC_POOL_SIZE
+ // Size of static memory block of memory_pool.
+ // Define RAPIDXML_STATIC_POOL_SIZE before including rapidxml.hpp if you want to override the default value.
+ // No dynamic memory allocations are performed by memory_pool until static memory is exhausted.
+ #define RAPIDXML_STATIC_POOL_SIZE (64 * 1024)
+#endif
+
+#ifndef RAPIDXML_DYNAMIC_POOL_SIZE
+ // Size of dynamic memory block of memory_pool.
+ // Define RAPIDXML_DYNAMIC_POOL_SIZE before including rapidxml.hpp if you want to override the default value.
+ // After the static block is exhausted, dynamic blocks with approximately this size are allocated by memory_pool.
+ #define RAPIDXML_DYNAMIC_POOL_SIZE (64 * 1024)
+#endif
+
+#ifndef RAPIDXML_ALIGNMENT
+ // Memory allocation alignment.
+ // Define RAPIDXML_ALIGNMENT before including rapidxml.hpp if you want to override the default value, which is the size of pointer.
+ // All memory allocations for nodes, attributes and strings will be aligned to this value.
+ // This must be a power of 2 and at least 1, otherwise memory_pool will not work.
+ #define RAPIDXML_ALIGNMENT sizeof(void *)
+#endif
+
+namespace rapidxml
+{
+ // Forward declarations
+ template<class Ch> class xml_node;
+ template<class Ch> class xml_attribute;
+ template<class Ch> class xml_document;
+
+ //! Enumeration listing all node types produced by the parser.
+ //! Use xml_node::type() function to query node type.
+ enum node_type
+ {
+ node_document, //!< A document node. Name and value are empty.
+ node_element, //!< An element node. Name contains element name. Value contains text of first data node.
+ node_data, //!< A data node. Name is empty. Value contains data text.
+ node_cdata, //!< A CDATA node. Name is empty. Value contains data text.
+ node_comment, //!< A comment node. Name is empty. Value contains comment text.
+ node_declaration, //!< A declaration node. Name and value are empty. Declaration parameters (version, encoding and standalone) are in node attributes.
+ node_doctype, //!< A DOCTYPE node. Name is empty. Value contains DOCTYPE text.
+ node_pi //!< A PI node. Name contains target. Value contains instructions.
+ };
+
+ ///////////////////////////////////////////////////////////////////////
+ // Parsing flags
+
+ //! Parse flag instructing the parser to not create data nodes.
+ //! Text of first data node will still be placed in value of parent element, unless rapidxml::parse_no_element_values flag is also specified.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_no_data_nodes = 0x1;
+
+ //! Parse flag instructing the parser to not use text of first data node as a value of parent element.
+ //! Can be combined with other flags by use of | operator.
+ //! Note that child data nodes of element node take precendence over its value when printing.
+ //! That is, if element has one or more child data nodes <em>and</em> a value, the value will be ignored.
+ //! Use rapidxml::parse_no_data_nodes flag to prevent creation of data nodes if you want to manipulate data using values of elements.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_no_element_values = 0x2;
+
+ //! Parse flag instructing the parser to not place zero terminators after strings in the source text.
+ //! By default zero terminators are placed, modifying source text.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_no_string_terminators = 0x4;
+
+ //! Parse flag instructing the parser to not translate entities in the source text.
+ //! By default entities are translated, modifying source text.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_no_entity_translation = 0x8;
+
+ //! Parse flag instructing the parser to disable UTF-8 handling and assume plain 8 bit characters.
+ //! By default, UTF-8 handling is enabled.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_no_utf8 = 0x10;
+
+ //! Parse flag instructing the parser to create XML declaration node.
+ //! By default, declaration node is not created.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_declaration_node = 0x20;
+
+ //! Parse flag instructing the parser to create comments nodes.
+ //! By default, comment nodes are not created.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_comment_nodes = 0x40;
+
+ //! Parse flag instructing the parser to create DOCTYPE node.
+ //! By default, doctype node is not created.
+ //! Although W3C specification allows at most one DOCTYPE node, RapidXml will silently accept documents with more than one.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_doctype_node = 0x80;
+
+ //! Parse flag instructing the parser to create PI nodes.
+ //! By default, PI nodes are not created.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_pi_nodes = 0x100;
+
+ //! Parse flag instructing the parser to validate closing tag names.
+ //! If not set, name inside closing tag is irrelevant to the parser.
+ //! By default, closing tags are not validated.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_validate_closing_tags = 0x200;
+
+ //! Parse flag instructing the parser to trim all leading and trailing whitespace of data nodes.
+ //! By default, whitespace is not trimmed.
+ //! This flag does not cause the parser to modify source text.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_trim_whitespace = 0x400;
+
+ //! Parse flag instructing the parser to condense all whitespace runs of data nodes to a single space character.
+ //! Trimming of leading and trailing whitespace of data is controlled by rapidxml::parse_trim_whitespace flag.
+ //! By default, whitespace is not normalized.
+ //! If this flag is specified, source text will be modified.
+ //! Can be combined with other flags by use of | operator.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_normalize_whitespace = 0x800;
+
+ // Compound flags
+
+ //! Parse flags which represent default behaviour of the parser.
+ //! This is always equal to 0, so that all other flags can be simply ored together.
+ //! Normally there is no need to inconveniently disable flags by anding with their negated (~) values.
+ //! This also means that meaning of each flag is a <i>negation</i> of the default setting.
+ //! For example, if flag name is rapidxml::parse_no_utf8, it means that utf-8 is <i>enabled</i> by default,
+ //! and using the flag will disable it.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_default = 0;
+
+ //! A combination of parse flags that forbids any modifications of the source text.
+ //! This also results in faster parsing. However, note that the following will occur:
+ //! <ul>
+ //! <li>names and values of nodes will not be zero terminated, you have to use xml_base::name_size() and xml_base::value_size() functions to determine where name and value ends</li>
+ //! <li>entities will not be translated</li>
+ //! <li>whitespace will not be normalized</li>
+ //! </ul>
+ //! See xml_document::parse() function.
+ const int parse_non_destructive = parse_no_string_terminators | parse_no_entity_translation;
+
+ //! A combination of parse flags resulting in fastest possible parsing, without sacrificing important data.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_fastest = parse_non_destructive | parse_no_data_nodes;
+
+ //! A combination of parse flags resulting in largest amount of data being extracted.
+ //! This usually results in slowest parsing.
+ //! <br><br>
+ //! See xml_document::parse() function.
+ const int parse_full = parse_declaration_node | parse_comment_nodes | parse_doctype_node | parse_pi_nodes | parse_validate_closing_tags;
+
+ ///////////////////////////////////////////////////////////////////////
+ // Internals
+
+ //! \cond internal
+ namespace internal
+ {
+
+ // Struct that contains lookup tables for the parser
+ // It must be a template to allow correct linking (because it has static data members, which are defined in a header file).
+ template<int Dummy>
+ struct lookup_tables
+ {
+ static const unsigned char lookup_whitespace[256]; // Whitespace table
+ static const unsigned char lookup_node_name[256]; // Node name table
+ static const unsigned char lookup_text[256]; // Text table
+ static const unsigned char lookup_text_pure_no_ws[256]; // Text table
+ static const unsigned char lookup_text_pure_with_ws[256]; // Text table
+ static const unsigned char lookup_attribute_name[256]; // Attribute name table
+ static const unsigned char lookup_attribute_data_1[256]; // Attribute data table with single quote
+ static const unsigned char lookup_attribute_data_1_pure[256]; // Attribute data table with single quote
+ static const unsigned char lookup_attribute_data_2[256]; // Attribute data table with double quotes
+ static const unsigned char lookup_attribute_data_2_pure[256]; // Attribute data table with double quotes
+ static const unsigned char lookup_digits[256]; // Digits
+ static const unsigned char lookup_upcase[256]; // To uppercase conversion table for ASCII characters
+ };
+
+ // Find length of the string
+ template<class Ch>
+ inline std::size_t measure(const Ch *p)
+ {
+ const Ch *tmp = p;
+ while (*tmp)
+ ++tmp;
+ return tmp - p;
+ }
+
+ // Compare strings for equality
+ template<class Ch>
+ inline bool compare(const Ch *p1, std::size_t size1, const Ch *p2, std::size_t size2, bool case_sensitive)
+ {
+ if (size1 != size2)
+ return false;
+ if (case_sensitive)
+ {
+ for (const Ch *end = p1 + size1; p1 < end; ++p1, ++p2)
+ if (*p1 != *p2)
+ return false;
+ }
+ else
+ {
+ for (const Ch *end = p1 + size1; p1 < end; ++p1, ++p2)
+ if (lookup_tables<0>::lookup_upcase[static_cast<unsigned char>(*p1)] != lookup_tables<0>::lookup_upcase[static_cast<unsigned char>(*p2)])
+ return false;
+ }
+ return true;
+ }
+ }
+ //! \endcond
+
+ ///////////////////////////////////////////////////////////////////////
+ // Memory pool
+
+ //! This class is used by the parser to create new nodes and attributes, without overheads of dynamic memory allocation.
+ //! In most cases, you will not need to use this class directly.
+ //! However, if you need to create nodes manually or modify names/values of nodes,
+ //! you are encouraged to use memory_pool of relevant xml_document to allocate the memory.
+ //! Not only is this faster than allocating them by using <code>new</code> operator,
+ //! but also their lifetime will be tied to the lifetime of document,
+ //! possibly simplyfing memory management.
+ //! <br><br>
+ //! Call allocate_node() or allocate_attribute() functions to obtain new nodes or attributes from the pool.
+ //! You can also call allocate_string() function to allocate strings.
+ //! Such strings can then be used as names or values of nodes without worrying about their lifetime.
+ //! Note that there is no <code>free()</code> function -- all allocations are freed at once when clear() function is called,
+ //! or when the pool is destroyed.
+ //! <br><br>
+ //! It is also possible to create a standalone memory_pool, and use it
+ //! to allocate nodes, whose lifetime will not be tied to any document.
+ //! <br><br>
+ //! Pool maintains <code>RAPIDXML_STATIC_POOL_SIZE</code> bytes of statically allocated memory.
+ //! Until static memory is exhausted, no dynamic memory allocations are done.
+ //! When static memory is exhausted, pool allocates additional blocks of memory of size <code>RAPIDXML_DYNAMIC_POOL_SIZE</code> each,
+ //! by using global <code>new[]</code> and <code>delete[]</code> operators.
+ //! This behaviour can be changed by setting custom allocation routines.
+ //! Use set_allocator() function to set them.
+ //! <br><br>
+ //! Allocations for nodes, attributes and strings are aligned at <code>RAPIDXML_ALIGNMENT</code> bytes.
+ //! This value defaults to the size of pointer on target architecture.
+ //! <br><br>
+ //! To obtain absolutely top performance from the parser,
+ //! it is important that all nodes are allocated from a single, contiguous block of memory.
+ //! Otherwise, cache misses when jumping between two (or more) disjoint blocks of memory can slow down parsing quite considerably.
+ //! If required, you can tweak <code>RAPIDXML_STATIC_POOL_SIZE</code>, <code>RAPIDXML_DYNAMIC_POOL_SIZE</code> and <code>RAPIDXML_ALIGNMENT</code>
+ //! to obtain best wasted memory to performance compromise.
+ //! To do it, define their values before rapidxml.hpp file is included.
+ //! \param Ch Character type of created nodes.
+ template<class Ch = char>
+ class memory_pool
+ {
+
+ public:
+
+ //! \cond internal
+ typedef void *(alloc_func)(std::size_t); // Type of user-defined function used to allocate memory
+ typedef void (free_func)(void *); // Type of user-defined function used to free memory
+ //! \endcond
+
+ //! Constructs empty pool with default allocator functions.
+ memory_pool()
+ : m_alloc_func(0)
+ , m_free_func(0)
+ {
+ init();
+ }
+
+ //! Destroys pool and frees all the memory.
+ //! This causes memory occupied by nodes allocated by the pool to be freed.
+ //! Nodes allocated from the pool are no longer valid.
+ ~memory_pool()
+ {
+ clear();
+ }
+
+ //! Allocates a new node from the pool, and optionally assigns name and value to it.
+ //! If the allocation request cannot be accomodated, this function will throw <code>std::bad_alloc</code>.
+ //! If exceptions are disabled by defining RAPIDXML_NO_EXCEPTIONS, this function
+ //! will call rapidxml::parse_error_handler() function.
+ //! \param type Type of node to create.
+ //! \param name Name to assign to the node, or 0 to assign no name.
+ //! \param value Value to assign to the node, or 0 to assign no value.
+ //! \param name_size Size of name to assign, or 0 to automatically calculate size from name string.
+ //! \param value_size Size of value to assign, or 0 to automatically calculate size from value string.
+ //! \return Pointer to allocated node. This pointer will never be NULL.
+ xml_node<Ch> *allocate_node(node_type type,
+ const Ch *name = 0, const Ch *value = 0,
+ std::size_t name_size = 0, std::size_t value_size = 0)
+ {
+ void *memory = allocate_aligned(sizeof(xml_node<Ch>));
+ xml_node<Ch> *node = new(memory) xml_node<Ch>(type);
+ if (name)
+ {
+ if (name_size > 0)
+ node->name(name, name_size);
+ else
+ node->name(name);
+ }
+ if (value)
+ {
+ if (value_size > 0)
+ node->value(value, value_size);
+ else
+ node->value(value);
+ }
+ return node;
+ }
+
+ //! Allocates a new attribute from the pool, and optionally assigns name and value to it.
+ //! If the allocation request cannot be accomodated, this function will throw <code>std::bad_alloc</code>.
+ //! If exceptions are disabled by defining RAPIDXML_NO_EXCEPTIONS, this function
+ //! will call rapidxml::parse_error_handler() function.
+ //! \param name Name to assign to the attribute, or 0 to assign no name.
+ //! \param value Value to assign to the attribute, or 0 to assign no value.
+ //! \param name_size Size of name to assign, or 0 to automatically calculate size from name string.
+ //! \param value_size Size of value to assign, or 0 to automatically calculate size from value string.
+ //! \return Pointer to allocated attribute. This pointer will never be NULL.
+ xml_attribute<Ch> *allocate_attribute(const Ch *name = 0, const Ch *value = 0,
+ std::size_t name_size = 0, std::size_t value_size = 0)
+ {
+ void *memory = allocate_aligned(sizeof(xml_attribute<Ch>));
+ xml_attribute<Ch> *attribute = new(memory) xml_attribute<Ch>;
+ if (name)
+ {
+ if (name_size > 0)
+ attribute->name(name, name_size);
+ else
+ attribute->name(name);
+ }
+ if (value)
+ {
+ if (value_size > 0)
+ attribute->value(value, value_size);
+ else
+ attribute->value(value);
+ }
+ return attribute;
+ }
+
+ //! Allocates a char array of given size from the pool, and optionally copies a given string to it.
+ //! If the allocation request cannot be accomodated, this function will throw <code>std::bad_alloc</code>.
+ //! If exceptions are disabled by defining RAPIDXML_NO_EXCEPTIONS, this function
+ //! will call rapidxml::parse_error_handler() function.
+ //! \param source String to initialize the allocated memory with, or 0 to not initialize it.
+ //! \param size Number of characters to allocate, or zero to calculate it automatically from source string length; if size is 0, source string must be specified and null terminated.
+ //! \return Pointer to allocated char array. This pointer will never be NULL.
+ Ch *allocate_string(const Ch *source = 0, std::size_t size = 0)
+ {
+ assert(source || size); // Either source or size (or both) must be specified
+ if (size == 0)
+ size = internal::measure(source) + 1;
+ Ch *result = static_cast<Ch *>(allocate_aligned(size * sizeof(Ch)));
+ if (source)
+ for (std::size_t i = 0; i < size; ++i)
+ result[i] = source[i];
+ return result;
+ }
+
+ //! Clones an xml_node and its hierarchy of child nodes and attributes.
+ //! Nodes and attributes are allocated from this memory pool.
+ //! Names and values are not cloned, they are shared between the clone and the source.
+ //! Result node can be optionally specified as a second parameter,
+ //! in which case its contents will be replaced with cloned source node.
+ //! This is useful when you want to clone entire document.
+ //! \param source Node to clone.
+ //! \param result Node to put results in, or 0 to automatically allocate result node
+ //! \return Pointer to cloned node. This pointer will never be NULL.
+ xml_node<Ch> *clone_node(const xml_node<Ch> *source, xml_node<Ch> *result = 0)
+ {
+ // Prepare result node
+ if (result)
+ {
+ result->remove_all_attributes();
+ result->remove_all_nodes();
+ result->type(source->type());
+ }
+ else
+ result = allocate_node(source->type());
+
+ // Clone name and value
+ result->name(source->name(), source->name_size());
+ result->value(source->value(), source->value_size());
+
+ // Clone child nodes and attributes
+ for (xml_node<Ch> *child = source->first_node(); child; child = child->next_sibling())
+ result->append_node(clone_node(child));
+ for (xml_attribute<Ch> *attr = source->first_attribute(); attr; attr = attr->next_attribute())
+ result->append_attribute(allocate_attribute(attr->name(), attr->value(), attr->name_size(), attr->value_size()));
+
+ return result;
+ }
+
+ //! Clears the pool.
+ //! This causes memory occupied by nodes allocated by the pool to be freed.
+ //! Any nodes or strings allocated from the pool will no longer be valid.
+ void clear()
+ {
+ while (m_begin != m_static_memory)
+ {
+ char *previous_begin = reinterpret_cast<header *>(align(m_begin))->previous_begin;
+ if (m_free_func)
+ m_free_func(m_begin);
+ else
+ delete[] m_begin;
+ m_begin = previous_begin;
+ }
+ init();
+ }
+
+ //! Sets or resets the user-defined memory allocation functions for the pool.
+ //! This can only be called when no memory is allocated from the pool yet, otherwise results are undefined.
+ //! Allocation function must not return invalid pointer on failure. It should either throw,
+ //! stop the program, or use <code>longjmp()</code> function to pass control to other place of program.
+ //! If it returns invalid pointer, results are undefined.
+ //! <br><br>
+ //! User defined allocation functions must have the following forms:
+ //! <br><code>
+ //! <br>void *allocate(std::size_t size);
+ //! <br>void free(void *pointer);
+ //! </code><br>
+ //! \param af Allocation function, or 0 to restore default function
+ //! \param ff Free function, or 0 to restore default function
+ void set_allocator(alloc_func *af, free_func *ff)
+ {
+ assert(m_begin == m_static_memory && m_ptr == align(m_begin)); // Verify that no memory is allocated yet
+ m_alloc_func = af;
+ m_free_func = ff;
+ }
+
+ private:
+
+ struct header
+ {
+ char *previous_begin;
+ };
+
+ void init()
+ {
+ m_begin = m_static_memory;
+ m_ptr = align(m_begin);
+ m_end = m_static_memory + sizeof(m_static_memory);
+ }
+
+ char *align(char *ptr)
+ {
+ std::size_t alignment = ((RAPIDXML_ALIGNMENT - (std::size_t(ptr) & (RAPIDXML_ALIGNMENT - 1))) & (RAPIDXML_ALIGNMENT - 1));
+ return ptr + alignment;
+ }
+
+ char *allocate_raw(std::size_t size)
+ {
+ // Allocate
+ void *memory;
+ if (m_alloc_func) // Allocate memory using either user-specified allocation function or global operator new[]
+ {
+ memory = m_alloc_func(size);
+ assert(memory); // Allocator is not allowed to return 0, on failure it must either throw, stop the program or use longjmp
+ }
+ else
+ {
+ memory = new char[size];
+#ifdef RAPIDXML_NO_EXCEPTIONS
+ if (!memory) // If exceptions are disabled, verify memory allocation, because new will not be able to throw bad_alloc
+ RAPIDXML_PARSE_ERROR("out of memory", 0);
+#endif
+ }
+ return static_cast<char *>(memory);
+ }
+
+ void *allocate_aligned(std::size_t size)
+ {
+ // Calculate aligned pointer
+ char *result = align(m_ptr);
+
+ // If not enough memory left in current pool, allocate a new pool
+ if (result + size > m_end)
+ {
+ // Calculate required pool size (may be bigger than RAPIDXML_DYNAMIC_POOL_SIZE)
+ std::size_t pool_size = RAPIDXML_DYNAMIC_POOL_SIZE;
+ if (pool_size < size)
+ pool_size = size;
+
+ // Allocate
+ std::size_t alloc_size = sizeof(header) + (2 * RAPIDXML_ALIGNMENT - 2) + pool_size; // 2 alignments required in worst case: one for header, one for actual allocation
+ char *raw_memory = allocate_raw(alloc_size);
+
+ // Setup new pool in allocated memory
+ char *pool = align(raw_memory);
+ header *new_header = reinterpret_cast<header *>(pool);
+ new_header->previous_begin = m_begin;
+ m_begin = raw_memory;
+ m_ptr = pool + sizeof(header);
+ m_end = raw_memory + alloc_size;
+
+ // Calculate aligned pointer again using new pool
+ result = align(m_ptr);
+ }
+
+ // Update pool and return aligned pointer
+ m_ptr = result + size;
+ return result;
+ }
+
+ char *m_begin; // Start of raw memory making up current pool
+ char *m_ptr; // First free byte in current pool
+ char *m_end; // One past last available byte in current pool
+ char m_static_memory[RAPIDXML_STATIC_POOL_SIZE]; // Static raw memory
+ alloc_func *m_alloc_func; // Allocator function, or 0 if default is to be used
+ free_func *m_free_func; // Free function, or 0 if default is to be used
+ };
+
+ ///////////////////////////////////////////////////////////////////////////
+ // XML base
+
+ //! Base class for xml_node and xml_attribute implementing common functions:
+ //! name(), name_size(), value(), value_size() and parent().
+ //! \param Ch Character type to use
+ template<class Ch = char>
+ class xml_base
+ {
+
+ public:
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Construction & destruction
+
+ // Construct a base with empty name, value and parent
+ xml_base()
+ : m_name(0)
+ , m_value(0)
+ , m_parent(0)
+ {
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Node data access
+
+ //! Gets name of the node.
+ //! Interpretation of name depends on type of node.
+ //! Note that name will not be zero-terminated if rapidxml::parse_no_string_terminators option was selected during parse.
+ //! <br><br>
+ //! Use name_size() function to determine length of the name.
+ //! \return Name of node, or empty string if node has no name.
+ Ch *name() const
+ {
+ return m_name ? m_name : nullstr();
+ }
+
+ //! Gets size of node name, not including terminator character.
+ //! This function works correctly irrespective of whether name is or is not zero terminated.
+ //! \return Size of node name, in characters.
+ std::size_t name_size() const
+ {
+ return m_name ? m_name_size : 0;
+ }
+
+ //! Gets value of node.
+ //! Interpretation of value depends on type of node.
+ //! Note that value will not be zero-terminated if rapidxml::parse_no_string_terminators option was selected during parse.
+ //! <br><br>
+ //! Use value_size() function to determine length of the value.
+ //! \return Value of node, or empty string if node has no value.
+ Ch *value() const
+ {
+ return m_value ? m_value : nullstr();
+ }
+
+ //! Gets size of node value, not including terminator character.
+ //! This function works correctly irrespective of whether value is or is not zero terminated.
+ //! \return Size of node value, in characters.
+ std::size_t value_size() const
+ {
+ return m_value ? m_value_size : 0;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Node modification
+
+ //! Sets name of node to a non zero-terminated string.
+ //! See \ref ownership_of_strings.
+ //! <br><br>
+ //! Note that node does not own its name or value, it only stores a pointer to it.
+ //! It will not delete or otherwise free the pointer on destruction.
+ //! It is reponsibility of the user to properly manage lifetime of the string.
+ //! The easiest way to achieve it is to use memory_pool of the document to allocate the string -
+ //! on destruction of the document the string will be automatically freed.
+ //! <br><br>
+ //! Size of name must be specified separately, because name does not have to be zero terminated.
+ //! Use name(const Ch *) function to have the length automatically calculated (string must be zero terminated).
+ //! \param name Name of node to set. Does not have to be zero terminated.
+ //! \param size Size of name, in characters. This does not include zero terminator, if one is present.
+ void name(const Ch *name, std::size_t size)
+ {
+ m_name = const_cast<Ch *>(name);
+ m_name_size = size;
+ }
+
+ //! Sets name of node to a zero-terminated string.
+ //! See also \ref ownership_of_strings and xml_node::name(const Ch *, std::size_t).
+ //! \param name Name of node to set. Must be zero terminated.
+ void name(const Ch *name)
+ {
+ this->name(name, internal::measure(name));
+ }
+
+ //! Sets value of node to a non zero-terminated string.
+ //! See \ref ownership_of_strings.
+ //! <br><br>
+ //! Note that node does not own its name or value, it only stores a pointer to it.
+ //! It will not delete or otherwise free the pointer on destruction.
+ //! It is reponsibility of the user to properly manage lifetime of the string.
+ //! The easiest way to achieve it is to use memory_pool of the document to allocate the string -
+ //! on destruction of the document the string will be automatically freed.
+ //! <br><br>
+ //! Size of value must be specified separately, because it does not have to be zero terminated.
+ //! Use value(const Ch *) function to have the length automatically calculated (string must be zero terminated).
+ //! <br><br>
+ //! If an element has a child node of type node_data, it will take precedence over element value when printing.
+ //! If you want to manipulate data of elements using values, use parser flag rapidxml::parse_no_data_nodes to prevent creation of data nodes by the parser.
+ //! \param value value of node to set. Does not have to be zero terminated.
+ //! \param size Size of value, in characters. This does not include zero terminator, if one is present.
+ void value(const Ch *value, std::size_t size)
+ {
+ m_value = const_cast<Ch *>(value);
+ m_value_size = size;
+ }
+
+ //! Sets value of node to a zero-terminated string.
+ //! See also \ref ownership_of_strings and xml_node::value(const Ch *, std::size_t).
+ //! \param value Vame of node to set. Must be zero terminated.
+ void value(const Ch *value)
+ {
+ this->value(value, internal::measure(value));
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Related nodes access
+
+ //! Gets node parent.
+ //! \return Pointer to parent node, or 0 if there is no parent.
+ xml_node<Ch> *parent() const
+ {
+ return m_parent;
+ }
+
+ protected:
+
+ // Return empty string
+ static Ch *nullstr()
+ {
+ static Ch zero = Ch('\0');
+ return &zero;
+ }
+
+ Ch *m_name; // Name of node, or 0 if no name
+ Ch *m_value; // Value of node, or 0 if no value
+ std::size_t m_name_size; // Length of node name, or undefined of no name
+ std::size_t m_value_size; // Length of node value, or undefined if no value
+ xml_node<Ch> *m_parent; // Pointer to parent node, or 0 if none
+
+ };
+
+ //! Class representing attribute node of XML document.
+ //! Each attribute has name and value strings, which are available through name() and value() functions (inherited from xml_base).
+ //! Note that after parse, both name and value of attribute will point to interior of source text used for parsing.
+ //! Thus, this text must persist in memory for the lifetime of attribute.
+ //! \param Ch Character type to use.
+ template<class Ch = char>
+ class xml_attribute: public xml_base<Ch>
+ {
+
+ friend class xml_node<Ch>;
+
+ public:
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Construction & destruction
+
+ //! Constructs an empty attribute with the specified type.
+ //! Consider using memory_pool of appropriate xml_document if allocating attributes manually.
+ xml_attribute()
+ {
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Related nodes access
+
+ //! Gets document of which attribute is a child.
+ //! \return Pointer to document that contains this attribute, or 0 if there is no parent document.
+ xml_document<Ch> *document() const
+ {
+ if (xml_node<Ch> *node = this->parent())
+ {
+ while (node->parent())
+ node = node->parent();
+ return node->type() == node_document ? static_cast<xml_document<Ch> *>(node) : 0;
+ }
+ else
+ return 0;
+ }
+
+ //! Gets previous attribute, optionally matching attribute name.
+ //! \param name Name of attribute to find, or 0 to return previous attribute regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found attribute, or 0 if not found.
+ xml_attribute<Ch> *previous_attribute(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_attribute<Ch> *attribute = m_prev_attribute; attribute; attribute = attribute->m_prev_attribute)
+ if (internal::compare(attribute->name(), attribute->name_size(), name, name_size, case_sensitive))
+ return attribute;
+ return 0;
+ }
+ else
+ return this->m_parent ? m_prev_attribute : 0;
+ }
+
+ //! Gets next attribute, optionally matching attribute name.
+ //! \param name Name of attribute to find, or 0 to return next attribute regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found attribute, or 0 if not found.
+ xml_attribute<Ch> *next_attribute(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_attribute<Ch> *attribute = m_next_attribute; attribute; attribute = attribute->m_next_attribute)
+ if (internal::compare(attribute->name(), attribute->name_size(), name, name_size, case_sensitive))
+ return attribute;
+ return 0;
+ }
+ else
+ return this->m_parent ? m_next_attribute : 0;
+ }
+
+ private:
+
+ xml_attribute<Ch> *m_prev_attribute; // Pointer to previous sibling of attribute, or 0 if none; only valid if parent is non-zero
+ xml_attribute<Ch> *m_next_attribute; // Pointer to next sibling of attribute, or 0 if none; only valid if parent is non-zero
+
+ };
+
+ ///////////////////////////////////////////////////////////////////////////
+ // XML node
+
+ //! Class representing a node of XML document.
+ //! Each node may have associated name and value strings, which are available through name() and value() functions.
+ //! Interpretation of name and value depends on type of the node.
+ //! Type of node can be determined by using type() function.
+ //! <br><br>
+ //! Note that after parse, both name and value of node, if any, will point interior of source text used for parsing.
+ //! Thus, this text must persist in the memory for the lifetime of node.
+ //! \param Ch Character type to use.
+ template<class Ch = char>
+ class xml_node: public xml_base<Ch>
+ {
+
+ public:
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Construction & destruction
+
+ //! Constructs an empty node with the specified type.
+ //! Consider using memory_pool of appropriate document to allocate nodes manually.
+ //! \param type Type of node to construct.
+ xml_node(node_type type)
+ : m_type(type)
+ , m_first_node(0)
+ , m_first_attribute(0)
+ {
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Node data access
+
+ //! Gets type of node.
+ //! \return Type of node.
+ node_type type() const
+ {
+ return m_type;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Related nodes access
+
+ //! Gets document of which node is a child.
+ //! \return Pointer to document that contains this node, or 0 if there is no parent document.
+ xml_document<Ch> *document() const
+ {
+ xml_node<Ch> *node = const_cast<xml_node<Ch> *>(this);
+ while (node->parent())
+ node = node->parent();
+ return node->type() == node_document ? static_cast<xml_document<Ch> *>(node) : 0;
+ }
+
+ //! Gets first child node, optionally matching node name.
+ //! \param name Name of child to find, or 0 to return first child regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found child, or 0 if not found.
+ xml_node<Ch> *first_node(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_node<Ch> *child = m_first_node; child; child = child->next_sibling())
+ if (internal::compare(child->name(), child->name_size(), name, name_size, case_sensitive))
+ return child;
+ return 0;
+ }
+ else
+ return m_first_node;
+ }
+
+ //! Gets last child node, optionally matching node name.
+ //! Behaviour is undefined if node has no children.
+ //! Use first_node() to test if node has children.
+ //! \param name Name of child to find, or 0 to return last child regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found child, or 0 if not found.
+ xml_node<Ch> *last_node(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ assert(m_first_node); // Cannot query for last child if node has no children
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_node<Ch> *child = m_last_node; child; child = child->previous_sibling())
+ if (internal::compare(child->name(), child->name_size(), name, name_size, case_sensitive))
+ return child;
+ return 0;
+ }
+ else
+ return m_last_node;
+ }
+
+ //! Gets previous sibling node, optionally matching node name.
+ //! Behaviour is undefined if node has no parent.
+ //! Use parent() to test if node has a parent.
+ //! \param name Name of sibling to find, or 0 to return previous sibling regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found sibling, or 0 if not found.
+ xml_node<Ch> *previous_sibling(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ assert(this->m_parent); // Cannot query for siblings if node has no parent
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_node<Ch> *sibling = m_prev_sibling; sibling; sibling = sibling->m_prev_sibling)
+ if (internal::compare(sibling->name(), sibling->name_size(), name, name_size, case_sensitive))
+ return sibling;
+ return 0;
+ }
+ else
+ return m_prev_sibling;
+ }
+
+ //! Gets next sibling node, optionally matching node name.
+ //! Behaviour is undefined if node has no parent.
+ //! Use parent() to test if node has a parent.
+ //! \param name Name of sibling to find, or 0 to return next sibling regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found sibling, or 0 if not found.
+ xml_node<Ch> *next_sibling(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ assert(this->m_parent); // Cannot query for siblings if node has no parent
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_node<Ch> *sibling = m_next_sibling; sibling; sibling = sibling->m_next_sibling)
+ if (internal::compare(sibling->name(), sibling->name_size(), name, name_size, case_sensitive))
+ return sibling;
+ return 0;
+ }
+ else
+ return m_next_sibling;
+ }
+
+ //! Gets first attribute of node, optionally matching attribute name.
+ //! \param name Name of attribute to find, or 0 to return first attribute regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found attribute, or 0 if not found.
+ xml_attribute<Ch> *first_attribute(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_attribute<Ch> *attribute = m_first_attribute; attribute; attribute = attribute->m_next_attribute)
+ if (internal::compare(attribute->name(), attribute->name_size(), name, name_size, case_sensitive))
+ return attribute;
+ return 0;
+ }
+ else
+ return m_first_attribute;
+ }
+
+ //! Gets last attribute of node, optionally matching attribute name.
+ //! \param name Name of attribute to find, or 0 to return last attribute regardless of its name; this string doesn't have to be zero-terminated if name_size is non-zero
+ //! \param name_size Size of name, in characters, or 0 to have size calculated automatically from string
+ //! \param case_sensitive Should name comparison be case-sensitive; non case-sensitive comparison works properly only for ASCII characters
+ //! \return Pointer to found attribute, or 0 if not found.
+ xml_attribute<Ch> *last_attribute(const Ch *name = 0, std::size_t name_size = 0, bool case_sensitive = true) const
+ {
+ if (name)
+ {
+ if (name_size == 0)
+ name_size = internal::measure(name);
+ for (xml_attribute<Ch> *attribute = m_last_attribute; attribute; attribute = attribute->m_prev_attribute)
+ if (internal::compare(attribute->name(), attribute->name_size(), name, name_size, case_sensitive))
+ return attribute;
+ return 0;
+ }
+ else
+ return m_first_attribute ? m_last_attribute : 0;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Node modification
+
+ //! Sets type of node.
+ //! \param type Type of node to set.
+ void type(node_type type)
+ {
+ m_type = type;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Node manipulation
+
+ //! Prepends a new child node.
+ //! The prepended child becomes the first child, and all existing children are moved one position back.
+ //! \param child Node to prepend.
+ void prepend_node(xml_node<Ch> *child)
+ {
+ assert(child && !child->parent() && child->type() != node_document);
+ if (first_node())
+ {
+ child->m_next_sibling = m_first_node;
+ m_first_node->m_prev_sibling = child;
+ }
+ else
+ {
+ child->m_next_sibling = 0;
+ m_last_node = child;
+ }
+ m_first_node = child;
+ child->m_parent = this;
+ child->m_prev_sibling = 0;
+ }
+
+ //! Appends a new child node.
+ //! The appended child becomes the last child.
+ //! \param child Node to append.
+ void append_node(xml_node<Ch> *child)
+ {
+ assert(child && !child->parent() && child->type() != node_document);
+ if (first_node())
+ {
+ child->m_prev_sibling = m_last_node;
+ m_last_node->m_next_sibling = child;
+ }
+ else
+ {
+ child->m_prev_sibling = 0;
+ m_first_node = child;
+ }
+ m_last_node = child;
+ child->m_parent = this;
+ child->m_next_sibling = 0;
+ }
+
+ //! Inserts a new child node at specified place inside the node.
+ //! All children after and including the specified node are moved one position back.
+ //! \param where Place where to insert the child, or 0 to insert at the back.
+ //! \param child Node to insert.
+ void insert_node(xml_node<Ch> *where, xml_node<Ch> *child)
+ {
+ assert(!where || where->parent() == this);
+ assert(child && !child->parent() && child->type() != node_document);
+ if (where == m_first_node)
+ prepend_node(child);
+ else if (where == 0)
+ append_node(child);
+ else
+ {
+ child->m_prev_sibling = where->m_prev_sibling;
+ child->m_next_sibling = where;
+ where->m_prev_sibling->m_next_sibling = child;
+ where->m_prev_sibling = child;
+ child->m_parent = this;
+ }
+ }
+
+ //! Removes first child node.
+ //! If node has no children, behaviour is undefined.
+ //! Use first_node() to test if node has children.
+ void remove_first_node()
+ {
+ assert(first_node());
+ xml_node<Ch> *child = m_first_node;
+ m_first_node = child->m_next_sibling;
+ if (child->m_next_sibling)
+ child->m_next_sibling->m_prev_sibling = 0;
+ else
+ m_last_node = 0;
+ child->m_parent = 0;
+ }
+
+ //! Removes last child of the node.
+ //! If node has no children, behaviour is undefined.
+ //! Use first_node() to test if node has children.
+ void remove_last_node()
+ {
+ assert(first_node());
+ xml_node<Ch> *child = m_last_node;
+ if (child->m_prev_sibling)
+ {
+ m_last_node = child->m_prev_sibling;
+ child->m_prev_sibling->m_next_sibling = 0;
+ }
+ else
+ m_first_node = 0;
+ child->m_parent = 0;
+ }
+
+ //! Removes specified child from the node
+ // \param where Pointer to child to be removed.
+ void remove_node(xml_node<Ch> *where)
+ {
+ assert(where && where->parent() == this);
+ assert(first_node());
+ if (where == m_first_node)
+ remove_first_node();
+ else if (where == m_last_node)
+ remove_last_node();
+ else
+ {
+ where->m_prev_sibling->m_next_sibling = where->m_next_sibling;
+ where->m_next_sibling->m_prev_sibling = where->m_prev_sibling;
+ where->m_parent = 0;
+ }
+ }
+
+ //! Removes all child nodes (but not attributes).
+ void remove_all_nodes()
+ {
+ for (xml_node<Ch> *node = first_node(); node; node = node->m_next_sibling)
+ node->m_parent = 0;
+ m_first_node = 0;
+ }
+
+ //! Prepends a new attribute to the node.
+ //! \param attribute Attribute to prepend.
+ void prepend_attribute(xml_attribute<Ch> *attribute)
+ {
+ assert(attribute && !attribute->parent());
+ if (first_attribute())
+ {
+ attribute->m_next_attribute = m_first_attribute;
+ m_first_attribute->m_prev_attribute = attribute;
+ }
+ else
+ {
+ attribute->m_next_attribute = 0;
+ m_last_attribute = attribute;
+ }
+ m_first_attribute = attribute;
+ attribute->m_parent = this;
+ attribute->m_prev_attribute = 0;
+ }
+
+ //! Appends a new attribute to the node.
+ //! \param attribute Attribute to append.
+ void append_attribute(xml_attribute<Ch> *attribute)
+ {
+ assert(attribute && !attribute->parent());
+ if (first_attribute())
+ {
+ attribute->m_prev_attribute = m_last_attribute;
+ m_last_attribute->m_next_attribute = attribute;
+ }
+ else
+ {
+ attribute->m_prev_attribute = 0;
+ m_first_attribute = attribute;
+ }
+ m_last_attribute = attribute;
+ attribute->m_parent = this;
+ attribute->m_next_attribute = 0;
+ }
+
+ //! Inserts a new attribute at specified place inside the node.
+ //! All attributes after and including the specified attribute are moved one position back.
+ //! \param where Place where to insert the attribute, or 0 to insert at the back.
+ //! \param attribute Attribute to insert.
+ void insert_attribute(xml_attribute<Ch> *where, xml_attribute<Ch> *attribute)
+ {
+ assert(!where || where->parent() == this);
+ assert(attribute && !attribute->parent());
+ if (where == m_first_attribute)
+ prepend_attribute(attribute);
+ else if (where == 0)
+ append_attribute(attribute);
+ else
+ {
+ attribute->m_prev_attribute = where->m_prev_attribute;
+ attribute->m_next_attribute = where;
+ where->m_prev_attribute->m_next_attribute = attribute;
+ where->m_prev_attribute = attribute;
+ attribute->m_parent = this;
+ }
+ }
+
+ //! Removes first attribute of the node.
+ //! If node has no attributes, behaviour is undefined.
+ //! Use first_attribute() to test if node has attributes.
+ void remove_first_attribute()
+ {
+ assert(first_attribute());
+ xml_attribute<Ch> *attribute = m_first_attribute;
+ if (attribute->m_next_attribute)
+ {
+ attribute->m_next_attribute->m_prev_attribute = 0;
+ }
+ else
+ m_last_attribute = 0;
+ attribute->m_parent = 0;
+ m_first_attribute = attribute->m_next_attribute;
+ }
+
+ //! Removes last attribute of the node.
+ //! If node has no attributes, behaviour is undefined.
+ //! Use first_attribute() to test if node has attributes.
+ void remove_last_attribute()
+ {
+ assert(first_attribute());
+ xml_attribute<Ch> *attribute = m_last_attribute;
+ if (attribute->m_prev_attribute)
+ {
+ attribute->m_prev_attribute->m_next_attribute = 0;
+ m_last_attribute = attribute->m_prev_attribute;
+ }
+ else
+ m_first_attribute = 0;
+ attribute->m_parent = 0;
+ }
+
+ //! Removes specified attribute from node.
+ //! \param where Pointer to attribute to be removed.
+ void remove_attribute(xml_attribute<Ch> *where)
+ {
+ assert(first_attribute() && where->parent() == this);
+ if (where == m_first_attribute)
+ remove_first_attribute();
+ else if (where == m_last_attribute)
+ remove_last_attribute();
+ else
+ {
+ where->m_prev_attribute->m_next_attribute = where->m_next_attribute;
+ where->m_next_attribute->m_prev_attribute = where->m_prev_attribute;
+ where->m_parent = 0;
+ }
+ }
+
+ //! Removes all attributes of node.
+ void remove_all_attributes()
+ {
+ for (xml_attribute<Ch> *attribute = first_attribute(); attribute; attribute = attribute->m_next_attribute)
+ attribute->m_parent = 0;
+ m_first_attribute = 0;
+ }
+
+ private:
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Restrictions
+
+ // No copying
+ xml_node(const xml_node &);
+ void operator =(const xml_node &);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Data members
+
+ // Note that some of the pointers below have UNDEFINED values if certain other pointers are 0.
+ // This is required for maximum performance, as it allows the parser to omit initialization of
+ // unneded/redundant values.
+ //
+ // The rules are as follows:
+ // 1. first_node and first_attribute contain valid pointers, or 0 if node has no children/attributes respectively
+ // 2. last_node and last_attribute are valid only if node has at least one child/attribute respectively, otherwise they contain garbage
+ // 3. prev_sibling and next_sibling are valid only if node has a parent, otherwise they contain garbage
+
+ node_type m_type; // Type of node; always valid
+ xml_node<Ch> *m_first_node; // Pointer to first child node, or 0 if none; always valid
+ xml_node<Ch> *m_last_node; // Pointer to last child node, or 0 if none; this value is only valid if m_first_node is non-zero
+ xml_attribute<Ch> *m_first_attribute; // Pointer to first attribute of node, or 0 if none; always valid
+ xml_attribute<Ch> *m_last_attribute; // Pointer to last attribute of node, or 0 if none; this value is only valid if m_first_attribute is non-zero
+ xml_node<Ch> *m_prev_sibling; // Pointer to previous sibling of node, or 0 if none; this value is only valid if m_parent is non-zero
+ xml_node<Ch> *m_next_sibling; // Pointer to next sibling of node, or 0 if none; this value is only valid if m_parent is non-zero
+
+ };
+
+ ///////////////////////////////////////////////////////////////////////////
+ // XML document
+
+ //! This class represents root of the DOM hierarchy.
+ //! It is also an xml_node and a memory_pool through public inheritance.
+ //! Use parse() function to build a DOM tree from a zero-terminated XML text string.
+ //! parse() function allocates memory for nodes and attributes by using functions of xml_document,
+ //! which are inherited from memory_pool.
+ //! To access root node of the document, use the document itself, as if it was an xml_node.
+ //! \param Ch Character type to use.
+ template<class Ch = char>
+ class xml_document: public xml_node<Ch>, public memory_pool<Ch>
+ {
+
+ public:
+
+ //! Constructs empty XML document
+ xml_document()
+ : xml_node<Ch>(node_document)
+ {
+ }
+
+ //! Parses zero-terminated XML string according to given flags.
+ //! Passed string will be modified by the parser, unless rapidxml::parse_non_destructive flag is used.
+ //! The string must persist for the lifetime of the document.
+ //! In case of error, rapidxml::parse_error exception will be thrown.
+ //! <br><br>
+ //! If you want to parse contents of a file, you must first load the file into the memory, and pass pointer to its beginning.
+ //! Make sure that data is zero-terminated.
+ //! <br><br>
+ //! Document can be parsed into multiple times.
+ //! Each new call to parse removes previous nodes and attributes (if any), but does not clear memory pool.
+ //! \param text XML data to parse; pointer is non-const to denote fact that this data may be modified by the parser.
+ template<int Flags>
+ void parse(Ch *text)
+ {
+ assert(text);
+
+ // Remove current contents
+ this->remove_all_nodes();
+ this->remove_all_attributes();
+
+ // Parse BOM, if any
+ parse_bom<Flags>(text);
+
+ // Parse children
+ while (1)
+ {
+ // Skip whitespace before node
+ skip<whitespace_pred, Flags>(text);
+ if (*text == 0)
+ break;
+
+ // Parse and append new child
+ if (*text == Ch('<'))
+ {
+ ++text; // Skip '<'
+ if (xml_node<Ch> *node = parse_node<Flags>(text))
+ this->append_node(node);
+ }
+ else
+ RAPIDXML_PARSE_ERROR("expected <", text);
+ }
+
+ }
+
+ //! Clears the document by deleting all nodes and clearing the memory pool.
+ //! All nodes owned by document pool are destroyed.
+ void clear()
+ {
+ this->remove_all_nodes();
+ this->remove_all_attributes();
+ memory_pool<Ch>::clear();
+ }
+
+ private:
+
+ ///////////////////////////////////////////////////////////////////////
+ // Internal character utility functions
+
+ // Detect whitespace character
+ struct whitespace_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_whitespace[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect node name character
+ struct node_name_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_node_name[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect attribute name character
+ struct attribute_name_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_attribute_name[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect text character (PCDATA)
+ struct text_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_text[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect text character (PCDATA) that does not require processing
+ struct text_pure_no_ws_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_text_pure_no_ws[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect text character (PCDATA) that does not require processing
+ struct text_pure_with_ws_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ return internal::lookup_tables<0>::lookup_text_pure_with_ws[static_cast<unsigned char>(ch)];
+ }
+ };
+
+ // Detect attribute value character
+ template<Ch Quote>
+ struct attribute_value_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ if (Quote == Ch('\''))
+ return internal::lookup_tables<0>::lookup_attribute_data_1[static_cast<unsigned char>(ch)];
+ if (Quote == Ch('\"'))
+ return internal::lookup_tables<0>::lookup_attribute_data_2[static_cast<unsigned char>(ch)];
+ return 0; // Should never be executed, to avoid warnings on Comeau
+ }
+ };
+
+ // Detect attribute value character
+ template<Ch Quote>
+ struct attribute_value_pure_pred
+ {
+ static unsigned char test(Ch ch)
+ {
+ if (Quote == Ch('\''))
+ return internal::lookup_tables<0>::lookup_attribute_data_1_pure[static_cast<unsigned char>(ch)];
+ if (Quote == Ch('\"'))
+ return internal::lookup_tables<0>::lookup_attribute_data_2_pure[static_cast<unsigned char>(ch)];
+ return 0; // Should never be executed, to avoid warnings on Comeau
+ }
+ };
+
+ // Insert coded character, using UTF8 or 8-bit ASCII
+ template<int Flags>
+ static void insert_coded_character(Ch *&text, unsigned long code)
+ {
+ if (Flags & parse_no_utf8)
+ {
+ // Insert 8-bit ASCII character
+ // Todo: possibly verify that code is less than 256 and use replacement char otherwise?
+ text[0] = static_cast<unsigned char>(code);
+ text += 1;
+ }
+ else
+ {
+ // Insert UTF8 sequence
+ if (code < 0x80) // 1 byte sequence
+ {
+ text[0] = static_cast<unsigned char>(code);
+ text += 1;
+ }
+ else if (code < 0x800) // 2 byte sequence
+ {
+ text[1] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[0] = static_cast<unsigned char>(code | 0xC0);
+ text += 2;
+ }
+ else if (code < 0x10000) // 3 byte sequence
+ {
+ text[2] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[1] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[0] = static_cast<unsigned char>(code | 0xE0);
+ text += 3;
+ }
+ else if (code < 0x110000) // 4 byte sequence
+ {
+ text[3] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[2] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[1] = static_cast<unsigned char>((code | 0x80) & 0xBF); code >>= 6;
+ text[0] = static_cast<unsigned char>(code | 0xF0);
+ text += 4;
+ }
+ else // Invalid, only codes up to 0x10FFFF are allowed in Unicode
+ {
+ RAPIDXML_PARSE_ERROR("invalid numeric character entity", text);
+ }
+ }
+ }
+
+ // Skip characters until predicate evaluates to true
+ template<class StopPred, int Flags>
+ static void skip(Ch *&text)
+ {
+ Ch *tmp = text;
+ while (StopPred::test(*tmp))
+ ++tmp;
+ text = tmp;
+ }
+
+ // Skip characters until predicate evaluates to true while doing the following:
+ // - replacing XML character entity references with proper characters (&apos; &amp; &quot; &lt; &gt; &#...;)
+ // - condensing whitespace sequences to single space character
+ template<class StopPred, class StopPredPure, int Flags>
+ static Ch *skip_and_expand_character_refs(Ch *&text)
+ {
+ // If entity translation, whitespace condense and whitespace trimming is disabled, use plain skip
+ if (Flags & parse_no_entity_translation &&
+ !(Flags & parse_normalize_whitespace) &&
+ !(Flags & parse_trim_whitespace))
+ {
+ skip<StopPred, Flags>(text);
+ return text;
+ }
+
+ // Use simple skip until first modification is detected
+ skip<StopPredPure, Flags>(text);
+
+ // Use translation skip
+ Ch *src = text;
+ Ch *dest = src;
+ while (StopPred::test(*src))
+ {
+ // If entity translation is enabled
+ if (!(Flags & parse_no_entity_translation))
+ {
+ // Test if replacement is needed
+ if (src[0] == Ch('&'))
+ {
+ switch (src[1])
+ {
+
+ // &amp; &apos;
+ case Ch('a'):
+ if (src[2] == Ch('m') && src[3] == Ch('p') && src[4] == Ch(';'))
+ {
+ *dest = Ch('&');
+ ++dest;
+ src += 5;
+ continue;
+ }
+ if (src[2] == Ch('p') && src[3] == Ch('o') && src[4] == Ch('s') && src[5] == Ch(';'))
+ {
+ *dest = Ch('\'');
+ ++dest;
+ src += 6;
+ continue;
+ }
+ break;
+
+ // &quot;
+ case Ch('q'):
+ if (src[2] == Ch('u') && src[3] == Ch('o') && src[4] == Ch('t') && src[5] == Ch(';'))
+ {
+ *dest = Ch('"');
+ ++dest;
+ src += 6;
+ continue;
+ }
+ break;
+
+ // &gt;
+ case Ch('g'):
+ if (src[2] == Ch('t') && src[3] == Ch(';'))
+ {
+ *dest = Ch('>');
+ ++dest;
+ src += 4;
+ continue;
+ }
+ break;
+
+ // &lt;
+ case Ch('l'):
+ if (src[2] == Ch('t') && src[3] == Ch(';'))
+ {
+ *dest = Ch('<');
+ ++dest;
+ src += 4;
+ continue;
+ }
+ break;
+
+ // &#...; - assumes ASCII
+ case Ch('#'):
+ if (src[2] == Ch('x'))
+ {
+ unsigned long code = 0;
+ src += 3; // Skip &#x
+ while (1)
+ {
+ unsigned char digit = internal::lookup_tables<0>::lookup_digits[static_cast<unsigned char>(*src)];
+ if (digit == 0xFF)
+ break;
+ code = code * 16 + digit;
+ ++src;
+ }
+ insert_coded_character<Flags>(dest, code); // Put character in output
+ }
+ else
+ {
+ unsigned long code = 0;
+ src += 2; // Skip &#
+ while (1)
+ {
+ unsigned char digit = internal::lookup_tables<0>::lookup_digits[static_cast<unsigned char>(*src)];
+ if (digit == 0xFF)
+ break;
+ code = code * 10 + digit;
+ ++src;
+ }
+ insert_coded_character<Flags>(dest, code); // Put character in output
+ }
+ if (*src == Ch(';'))
+ ++src;
+ else
+ RAPIDXML_PARSE_ERROR("expected ;", src);
+ continue;
+
+ // Something else
+ default:
+ // Ignore, just copy '&' verbatim
+ break;
+
+ }
+ }
+ }
+
+ // If whitespace condensing is enabled
+ if (Flags & parse_normalize_whitespace)
+ {
+ // Test if condensing is needed
+ if (whitespace_pred::test(*src))
+ {
+ *dest = Ch(' '); ++dest; // Put single space in dest
+ ++src; // Skip first whitespace char
+ // Skip remaining whitespace chars
+ while (whitespace_pred::test(*src))
+ ++src;
+ continue;
+ }
+ }
+
+ // No replacement, only copy character
+ *dest++ = *src++;
+
+ }
+
+ // Return new end
+ text = src;
+ return dest;
+
+ }
+
+ ///////////////////////////////////////////////////////////////////////
+ // Internal parsing functions
+
+ // Parse BOM, if any
+ template<int Flags>
+ void parse_bom(Ch *&text)
+ {
+ // UTF-8?
+ if (static_cast<unsigned char>(text[0]) == 0xEF &&
+ static_cast<unsigned char>(text[1]) == 0xBB &&
+ static_cast<unsigned char>(text[2]) == 0xBF)
+ {
+ text += 3; // Skup utf-8 bom
+ }
+ }
+
+ // Parse XML declaration (<?xml...)
+ template<int Flags>
+ xml_node<Ch> *parse_xml_declaration(Ch *&text)
+ {
+ // If parsing of declaration is disabled
+ if (!(Flags & parse_declaration_node))
+ {
+ // Skip until end of declaration
+ while (text[0] != Ch('?') || text[1] != Ch('>'))
+ {
+ if (!text[0])
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+ text += 2; // Skip '?>'
+ return 0;
+ }
+
+ // Create declaration
+ xml_node<Ch> *declaration = this->allocate_node(node_declaration);
+
+ // Skip whitespace before attributes or ?>
+ skip<whitespace_pred, Flags>(text);
+
+ // Parse declaration attributes
+ parse_node_attributes<Flags>(text, declaration);
+
+ // Skip ?>
+ if (text[0] != Ch('?') || text[1] != Ch('>'))
+ RAPIDXML_PARSE_ERROR("expected ?>", text);
+ text += 2;
+
+ return declaration;
+ }
+
+ // Parse XML comment (<!--...)
+ template<int Flags>
+ xml_node<Ch> *parse_comment(Ch *&text)
+ {
+ // If parsing of comments is disabled
+ if (!(Flags & parse_comment_nodes))
+ {
+ // Skip until end of comment
+ while (text[0] != Ch('-') || text[1] != Ch('-') || text[2] != Ch('>'))
+ {
+ if (!text[0])
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+ text += 3; // Skip '-->'
+ return 0; // Do not produce comment node
+ }
+
+ // Remember value start
+ Ch *value = text;
+
+ // Skip until end of comment
+ while (text[0] != Ch('-') || text[1] != Ch('-') || text[2] != Ch('>'))
+ {
+ if (!text[0])
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+
+ // Create comment node
+ xml_node<Ch> *comment = this->allocate_node(node_comment);
+ comment->value(value, text - value);
+
+ // Place zero terminator after comment value
+ if (!(Flags & parse_no_string_terminators))
+ *text = Ch('\0');
+
+ text += 3; // Skip '-->'
+ return comment;
+ }
+
+ // Parse DOCTYPE
+ template<int Flags>
+ xml_node<Ch> *parse_doctype(Ch *&text)
+ {
+ // Remember value start
+ Ch *value = text;
+
+ // Skip to >
+ while (*text != Ch('>'))
+ {
+ // Determine character type
+ switch (*text)
+ {
+
+ // If '[' encountered, scan for matching ending ']' using naive algorithm with depth
+ // This works for all W3C test files except for 2 most wicked
+ case Ch('['):
+ {
+ ++text; // Skip '['
+ int depth = 1;
+ while (depth > 0)
+ {
+ switch (*text)
+ {
+ case Ch('['): ++depth; break;
+ case Ch(']'): --depth; break;
+ case 0: RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ }
+ ++text;
+ }
+ break;
+ }
+
+ // Error on end of text
+ case Ch('\0'):
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+
+ // Other character, skip it
+ default:
+ ++text;
+
+ }
+ }
+
+ // If DOCTYPE nodes enabled
+ if (Flags & parse_doctype_node)
+ {
+ // Create a new doctype node
+ xml_node<Ch> *doctype = this->allocate_node(node_doctype);
+ doctype->value(value, text - value);
+
+ // Place zero terminator after value
+ if (!(Flags & parse_no_string_terminators))
+ *text = Ch('\0');
+
+ text += 1; // skip '>'
+ return doctype;
+ }
+ else
+ {
+ text += 1; // skip '>'
+ return 0;
+ }
+
+ }
+
+ // Parse PI
+ template<int Flags>
+ xml_node<Ch> *parse_pi(Ch *&text)
+ {
+ // If creation of PI nodes is enabled
+ if (Flags & parse_pi_nodes)
+ {
+ // Create pi node
+ xml_node<Ch> *pi = this->allocate_node(node_pi);
+
+ // Extract PI target name
+ Ch *name = text;
+ skip<node_name_pred, Flags>(text);
+ if (text == name)
+ RAPIDXML_PARSE_ERROR("expected PI target", text);
+ pi->name(name, text - name);
+
+ // Skip whitespace between pi target and pi
+ skip<whitespace_pred, Flags>(text);
+
+ // Remember start of pi
+ Ch *value = text;
+
+ // Skip to '?>'
+ while (text[0] != Ch('?') || text[1] != Ch('>'))
+ {
+ if (*text == Ch('\0'))
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+
+ // Set pi value (verbatim, no entity expansion or whitespace normalization)
+ pi->value(value, text - value);
+
+ // Place zero terminator after name and value
+ if (!(Flags & parse_no_string_terminators))
+ {
+ pi->name()[pi->name_size()] = Ch('\0');
+ pi->value()[pi->value_size()] = Ch('\0');
+ }
+
+ text += 2; // Skip '?>'
+ return pi;
+ }
+ else
+ {
+ // Skip to '?>'
+ while (text[0] != Ch('?') || text[1] != Ch('>'))
+ {
+ if (*text == Ch('\0'))
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+ text += 2; // Skip '?>'
+ return 0;
+ }
+ }
+
+ // Parse and append data
+ // Return character that ends data.
+ // This is necessary because this character might have been overwritten by a terminating 0
+ template<int Flags>
+ Ch parse_and_append_data(xml_node<Ch> *node, Ch *&text, Ch *contents_start)
+ {
+ // Backup to contents start if whitespace trimming is disabled
+ if (!(Flags & parse_trim_whitespace))
+ text = contents_start;
+
+ // Skip until end of data
+ Ch *value = text, *end;
+ if (Flags & parse_normalize_whitespace)
+ end = skip_and_expand_character_refs<text_pred, text_pure_with_ws_pred, Flags>(text);
+ else
+ end = skip_and_expand_character_refs<text_pred, text_pure_no_ws_pred, Flags>(text);
+
+ // Trim trailing whitespace if flag is set; leading was already trimmed by whitespace skip after >
+ if (Flags & parse_trim_whitespace)
+ {
+ if (Flags & parse_normalize_whitespace)
+ {
+ // Whitespace is already condensed to single space characters by skipping function, so just trim 1 char off the end
+ if (*(end - 1) == Ch(' '))
+ --end;
+ }
+ else
+ {
+ // Backup until non-whitespace character is found
+ while (whitespace_pred::test(*(end - 1)))
+ --end;
+ }
+ }
+
+ // If characters are still left between end and value (this test is only necessary if normalization is enabled)
+ // Create new data node
+ if (!(Flags & parse_no_data_nodes))
+ {
+ xml_node<Ch> *data = this->allocate_node(node_data);
+ data->value(value, end - value);
+ node->append_node(data);
+ }
+
+ // Add data to parent node if no data exists yet
+ if (!(Flags & parse_no_element_values))
+ if (*node->value() == Ch('\0'))
+ node->value(value, end - value);
+
+ // Place zero terminator after value
+ if (!(Flags & parse_no_string_terminators))
+ {
+ Ch ch = *text;
+ *end = Ch('\0');
+ return ch; // Return character that ends data; this is required because zero terminator overwritten it
+ }
+
+ // Return character that ends data
+ return *text;
+ }
+
+ // Parse CDATA
+ template<int Flags>
+ xml_node<Ch> *parse_cdata(Ch *&text)
+ {
+ // If CDATA is disabled
+ if (Flags & parse_no_data_nodes)
+ {
+ // Skip until end of cdata
+ while (text[0] != Ch(']') || text[1] != Ch(']') || text[2] != Ch('>'))
+ {
+ if (!text[0])
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+ text += 3; // Skip ]]>
+ return 0; // Do not produce CDATA node
+ }
+
+ // Skip until end of cdata
+ Ch *value = text;
+ while (text[0] != Ch(']') || text[1] != Ch(']') || text[2] != Ch('>'))
+ {
+ if (!text[0])
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+
+ // Create new cdata node
+ xml_node<Ch> *cdata = this->allocate_node(node_cdata);
+ cdata->value(value, text - value);
+
+ // Place zero terminator after value
+ if (!(Flags & parse_no_string_terminators))
+ *text = Ch('\0');
+
+ text += 3; // Skip ]]>
+ return cdata;
+ }
+
+ // Parse element node
+ template<int Flags>
+ xml_node<Ch> *parse_element(Ch *&text)
+ {
+ // Create element node
+ xml_node<Ch> *element = this->allocate_node(node_element);
+
+ // Extract element name
+ Ch *name = text;
+ skip<node_name_pred, Flags>(text);
+ if (text == name)
+ RAPIDXML_PARSE_ERROR("expected element name", text);
+ element->name(name, text - name);
+
+ // Skip whitespace between element name and attributes or >
+ skip<whitespace_pred, Flags>(text);
+
+ // Parse attributes, if any
+ parse_node_attributes<Flags>(text, element);
+
+ // Determine ending type
+ if (*text == Ch('>'))
+ {
+ ++text;
+ parse_node_contents<Flags>(text, element);
+ }
+ else if (*text == Ch('/'))
+ {
+ ++text;
+ if (*text != Ch('>'))
+ RAPIDXML_PARSE_ERROR("expected >", text);
+ ++text;
+ }
+ else
+ RAPIDXML_PARSE_ERROR("expected >", text);
+
+ // Place zero terminator after name
+ if (!(Flags & parse_no_string_terminators))
+ element->name()[element->name_size()] = Ch('\0');
+
+ // Return parsed element
+ return element;
+ }
+
+ // Determine node type, and parse it
+ template<int Flags>
+ xml_node<Ch> *parse_node(Ch *&text)
+ {
+ // Parse proper node type
+ switch (text[0])
+ {
+
+ // <...
+ default:
+ // Parse and append element node
+ return parse_element<Flags>(text);
+
+ // <?...
+ case Ch('?'):
+ ++text; // Skip ?
+ if ((text[0] == Ch('x') || text[0] == Ch('X')) &&
+ (text[1] == Ch('m') || text[1] == Ch('M')) &&
+ (text[2] == Ch('l') || text[2] == Ch('L')) &&
+ whitespace_pred::test(text[3]))
+ {
+ // '<?xml ' - xml declaration
+ text += 4; // Skip 'xml '
+ return parse_xml_declaration<Flags>(text);
+ }
+ else
+ {
+ // Parse PI
+ return parse_pi<Flags>(text);
+ }
+
+ // <!...
+ case Ch('!'):
+
+ // Parse proper subset of <! node
+ switch (text[1])
+ {
+
+ // <!-
+ case Ch('-'):
+ if (text[2] == Ch('-'))
+ {
+ // '<!--' - xml comment
+ text += 3; // Skip '!--'
+ return parse_comment<Flags>(text);
+ }
+ break;
+
+ // <![
+ case Ch('['):
+ if (text[2] == Ch('C') && text[3] == Ch('D') && text[4] == Ch('A') &&
+ text[5] == Ch('T') && text[6] == Ch('A') && text[7] == Ch('['))
+ {
+ // '<![CDATA[' - cdata
+ text += 8; // Skip '![CDATA['
+ return parse_cdata<Flags>(text);
+ }
+ break;
+
+ // <!D
+ case Ch('D'):
+ if (text[2] == Ch('O') && text[3] == Ch('C') && text[4] == Ch('T') &&
+ text[5] == Ch('Y') && text[6] == Ch('P') && text[7] == Ch('E') &&
+ whitespace_pred::test(text[8]))
+ {
+ // '<!DOCTYPE ' - doctype
+ text += 9; // skip '!DOCTYPE '
+ return parse_doctype<Flags>(text);
+ }
+
+ } // switch
+
+ // Attempt to skip other, unrecognized node types starting with <!
+ ++text; // Skip !
+ while (*text != Ch('>'))
+ {
+ if (*text == 0)
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+ ++text;
+ }
+ ++text; // Skip '>'
+ return 0; // No node recognized
+
+ }
+ }
+
+ // Parse contents of the node - children, data etc.
+ template<int Flags>
+ void parse_node_contents(Ch *&text, xml_node<Ch> *node)
+ {
+ // For all children and text
+ while (1)
+ {
+ // Skip whitespace between > and node contents
+ Ch *contents_start = text; // Store start of node contents before whitespace is skipped
+ skip<whitespace_pred, Flags>(text);
+ Ch next_char = *text;
+
+ // After data nodes, instead of continuing the loop, control jumps here.
+ // This is because zero termination inside parse_and_append_data() function
+ // would wreak havoc with the above code.
+ // Also, skipping whitespace after data nodes is unnecessary.
+ after_data_node:
+
+ // Determine what comes next: node closing, child node, data node, or 0?
+ switch (next_char)
+ {
+
+ // Node closing or child node
+ case Ch('<'):
+ if (text[1] == Ch('/'))
+ {
+ // Node closing
+ text += 2; // Skip '</'
+ if (Flags & parse_validate_closing_tags)
+ {
+ // Skip and validate closing tag name
+ Ch *closing_name = text;
+ skip<node_name_pred, Flags>(text);
+ if (!internal::compare(node->name(), node->name_size(), closing_name, text - closing_name, true))
+ RAPIDXML_PARSE_ERROR("invalid closing tag name", text);
+ }
+ else
+ {
+ // No validation, just skip name
+ skip<node_name_pred, Flags>(text);
+ }
+ // Skip remaining whitespace after node name
+ skip<whitespace_pred, Flags>(text);
+ if (*text != Ch('>'))
+ RAPIDXML_PARSE_ERROR("expected >", text);
+ ++text; // Skip '>'
+ return; // Node closed, finished parsing contents
+ }
+ else
+ {
+ // Child node
+ ++text; // Skip '<'
+ if (xml_node<Ch> *child = parse_node<Flags>(text))
+ node->append_node(child);
+ }
+ break;
+
+ // End of data - error
+ case Ch('\0'):
+ RAPIDXML_PARSE_ERROR("unexpected end of data", text);
+
+ // Data node
+ default:
+ next_char = parse_and_append_data<Flags>(node, text, contents_start);
+ goto after_data_node; // Bypass regular processing after data nodes
+
+ }
+ }
+ }
+
+ // Parse XML attributes of the node
+ template<int Flags>
+ void parse_node_attributes(Ch *&text, xml_node<Ch> *node)
+ {
+ // For all attributes
+ while (attribute_name_pred::test(*text))
+ {
+ // Extract attribute name
+ Ch *name = text;
+ ++text; // Skip first character of attribute name
+ skip<attribute_name_pred, Flags>(text);
+ if (text == name)
+ RAPIDXML_PARSE_ERROR("expected attribute name", name);
+
+ // Create new attribute
+ xml_attribute<Ch> *attribute = this->allocate_attribute();
+ attribute->name(name, text - name);
+ node->append_attribute(attribute);
+
+ // Skip whitespace after attribute name
+ skip<whitespace_pred, Flags>(text);
+
+ // Skip =
+ if (*text != Ch('='))
+ RAPIDXML_PARSE_ERROR("expected =", text);
+ ++text;
+
+ // Add terminating zero after name
+ if (!(Flags & parse_no_string_terminators))
+ attribute->name()[attribute->name_size()] = 0;
+
+ // Skip whitespace after =
+ skip<whitespace_pred, Flags>(text);
+
+ // Skip quote and remember if it was ' or "
+ Ch quote = *text;
+ if (quote != Ch('\'') && quote != Ch('"'))
+ RAPIDXML_PARSE_ERROR("expected ' or \"", text);
+ ++text;
+
+ // Extract attribute value and expand char refs in it
+ Ch *value = text, *end;
+ const int AttFlags = Flags & ~parse_normalize_whitespace; // No whitespace normalization in attributes
+ if (quote == Ch('\''))
+ end = skip_and_expand_character_refs<attribute_value_pred<Ch('\'')>, attribute_value_pure_pred<Ch('\'')>, AttFlags>(text);
+ else
+ end = skip_and_expand_character_refs<attribute_value_pred<Ch('"')>, attribute_value_pure_pred<Ch('"')>, AttFlags>(text);
+
+ // Set attribute value
+ attribute->value(value, end - value);
+
+ // Make sure that end quote is present
+ if (*text != quote)
+ RAPIDXML_PARSE_ERROR("expected ' or \"", text);
+ ++text; // Skip quote
+
+ // Add terminating zero after value
+ if (!(Flags & parse_no_string_terminators))
+ attribute->value()[attribute->value_size()] = 0;
+
+ // Skip whitespace after attribute value
+ skip<whitespace_pred, Flags>(text);
+ }
+ }
+
+ };
+
+ //! \cond internal
+ namespace internal
+ {
+
+ // Whitespace (space \n \r \t)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_whitespace[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, // 0
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 1
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 2
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 3
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 4
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 5
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 6
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 7
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // C
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // E
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F
+ };
+
+ // Node name (anything but space \n \r \t / > ? \0)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_node_name[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Text (i.e. PCDATA) (anything but < \0)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_text[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Text (i.e. PCDATA) that does not require processing when ws normalization is disabled
+ // (anything but < \0 &)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_text_pure_no_ws[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Text (i.e. PCDATA) that does not require processing when ws normalizationis is enabled
+ // (anything but < \0 & space \n \r \t)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_text_pure_with_ws[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Attribute name (anything but space \n \r \t / < > = ? ! \0)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_attribute_name[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Attribute data with single quote (anything but ' \0)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_attribute_data_1[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Attribute data with single quote that does not require processing (anything but ' \0 &)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_attribute_data_1_pure[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Attribute data with double quote (anything but " \0)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_attribute_data_2[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Attribute data with double quote that does not require processing (anything but " \0 &)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_attribute_data_2_pure[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1
+ 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // C
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // D
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // E
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F
+ };
+
+ // Digits (dec and hex, 255 denotes end of numeric character reference)
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_digits[256] =
+ {
+ // 0 1 2 3 4 5 6 7 8 9 A B C D E F
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 0
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 1
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 2
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,255,255,255,255,255,255, // 3
+ 255, 10, 11, 12, 13, 14, 15,255,255,255,255,255,255,255,255,255, // 4
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 5
+ 255, 10, 11, 12, 13, 14, 15,255,255,255,255,255,255,255,255,255, // 6
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 7
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 8
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // 9
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // A
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // B
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // C
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // D
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, // E
+ 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255 // F
+ };
+
+ // Upper case conversion
+ template<int Dummy>
+ const unsigned char lookup_tables<Dummy>::lookup_upcase[256] =
+ {
+ // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A B C D E F
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, // 0
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, // 1
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, // 2
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, // 3
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, // 4
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, // 5
+ 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, // 6
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123,124,125,126,127, // 7
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, // 8
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, // 9
+ 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, // A
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, // B
+ 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, // C
+ 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223, // D
+ 224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239, // E
+ 240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255 // F
+ };
+ }
+ //! \endcond
+
+}
+
+// Undefine internal macros
+#undef RAPIDXML_PARSE_ERROR
+
+// On MSVC, restore warnings state
+#ifdef _MSC_VER
+ #pragma warning(pop)
+#endif
+
+#endif
diff --git a/lib/include/rapidxml/rapidxml_print.hpp b/lib/include/rapidxml/rapidxml_print.hpp
new file mode 100644
index 0000000..4432273
--- /dev/null
+++ b/lib/include/rapidxml/rapidxml_print.hpp
@@ -0,0 +1,424 @@
+#ifndef RAPIDXML_PRINT_HPP_INCLUDED
+#define RAPIDXML_PRINT_HPP_INCLUDED
+
+// Copyright (C) 2006, 2009 Marcin Kalicinski
+// Version 1.13
+// Revision $DateTime: 2009/05/13 01:46:17 $
+//! \file rapidxml_print.hpp This file contains rapidxml printer implementation
+
+#include "rapidxml.hpp"
+
+// Only include streams if not disabled
+#ifndef RAPIDXML_NO_STREAMS
+ #include <ostream>
+ #include <iterator>
+#endif
+
+namespace rapidxml
+{
+
+ ///////////////////////////////////////////////////////////////////////
+ // Printing flags
+
+ const int print_no_indenting = 0x1; //!< Printer flag instructing the printer to suppress indenting of XML. See print() function.
+
+ ///////////////////////////////////////////////////////////////////////
+ // Internal
+
+ //! \cond internal
+ namespace internal
+ {
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Internal character operations
+
+ // Copy characters from given range to given output iterator
+ template<class OutIt, class Ch>
+ inline OutIt copy_chars(const Ch *begin, const Ch *end, OutIt out)
+ {
+ while (begin != end)
+ *out++ = *begin++;
+ return out;
+ }
+
+ // Copy characters from given range to given output iterator and expand
+ // characters into references (&lt; &gt; &apos; &quot; &amp;)
+ template<class OutIt, class Ch>
+ inline OutIt copy_and_expand_chars(const Ch *begin, const Ch *end, Ch noexpand, OutIt out)
+ {
+ while (begin != end)
+ {
+ if (*begin == noexpand)
+ {
+ *out++ = *begin; // No expansion, copy character
+ }
+ else
+ {
+ switch (*begin)
+ {
+ case Ch('<'):
+ *out++ = Ch('&'); *out++ = Ch('l'); *out++ = Ch('t'); *out++ = Ch(';');
+ break;
+ case Ch('>'):
+ *out++ = Ch('&'); *out++ = Ch('g'); *out++ = Ch('t'); *out++ = Ch(';');
+ break;
+ case Ch('\''):
+ *out++ = Ch('&'); *out++ = Ch('a'); *out++ = Ch('p'); *out++ = Ch('o'); *out++ = Ch('s'); *out++ = Ch(';');
+ break;
+ case Ch('"'):
+ *out++ = Ch('&'); *out++ = Ch('q'); *out++ = Ch('u'); *out++ = Ch('o'); *out++ = Ch('t'); *out++ = Ch(';');
+ break;
+ case Ch('&'):
+ *out++ = Ch('&'); *out++ = Ch('a'); *out++ = Ch('m'); *out++ = Ch('p'); *out++ = Ch(';');
+ break;
+ default:
+ *out++ = *begin; // No expansion, copy character
+ }
+ }
+ ++begin; // Step to next character
+ }
+ return out;
+ }
+
+ // Fill given output iterator with repetitions of the same character
+ template<class OutIt, class Ch>
+ inline OutIt fill_chars(OutIt out, int n, Ch ch)
+ {
+ for (int i = 0; i < n; ++i)
+ *out++ = ch;
+ return out;
+ }
+
+ // Find character
+ template<class Ch, Ch ch>
+ inline bool find_char(const Ch *begin, const Ch *end)
+ {
+ while (begin != end)
+ if (*begin++ == ch)
+ return true;
+ return false;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Internal printing operations
+
+ template<class OutIt, class Ch>
+ inline OutIt print_node(OutIt out, const xml_node<Ch> *node, int flags, int indent);
+
+ // Print children of the node
+ template<class OutIt, class Ch>
+ inline OutIt print_children(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ for (xml_node<Ch> *child = node->first_node(); child; child = child->next_sibling())
+ out = print_node(out, child, flags, indent);
+ return out;
+ }
+
+ // Print attributes of the node
+ template<class OutIt, class Ch>
+ inline OutIt print_attributes(OutIt out, const xml_node<Ch> *node, int flags)
+ {
+ for (xml_attribute<Ch> *attribute = node->first_attribute(); attribute; attribute = attribute->next_attribute())
+ {
+ if (attribute->name() && attribute->value())
+ {
+ // Print attribute name
+ *out = Ch(' '), ++out;
+ out = copy_chars(attribute->name(), attribute->name() + attribute->name_size(), out);
+ *out = Ch('='), ++out;
+ // Print attribute value using appropriate quote type
+ if (find_char<Ch, Ch('"')>(attribute->value(), attribute->value() + attribute->value_size()))
+ {
+ *out = Ch('\''), ++out;
+ out = copy_and_expand_chars(attribute->value(), attribute->value() + attribute->value_size(), Ch('"'), out);
+ *out = Ch('\''), ++out;
+ }
+ else
+ {
+ *out = Ch('"'), ++out;
+ out = copy_and_expand_chars(attribute->value(), attribute->value() + attribute->value_size(), Ch('\''), out);
+ *out = Ch('"'), ++out;
+ }
+ }
+ }
+ return out;
+ }
+
+ // Print data node
+ template<class OutIt, class Ch>
+ inline OutIt print_data_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_data);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ out = copy_and_expand_chars(node->value(), node->value() + node->value_size(), Ch(0), out);
+ return out;
+ }
+
+ // Print data node
+ template<class OutIt, class Ch>
+ inline OutIt print_cdata_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_cdata);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'); ++out;
+ *out = Ch('!'); ++out;
+ *out = Ch('['); ++out;
+ *out = Ch('C'); ++out;
+ *out = Ch('D'); ++out;
+ *out = Ch('A'); ++out;
+ *out = Ch('T'); ++out;
+ *out = Ch('A'); ++out;
+ *out = Ch('['); ++out;
+ out = copy_chars(node->value(), node->value() + node->value_size(), out);
+ *out = Ch(']'); ++out;
+ *out = Ch(']'); ++out;
+ *out = Ch('>'); ++out;
+ return out;
+ }
+
+ // Print element node
+ template<class OutIt, class Ch>
+ inline OutIt print_element_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_element);
+
+ // Print element name and attributes, if any
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'), ++out;
+ out = copy_chars(node->name(), node->name() + node->name_size(), out);
+ out = print_attributes(out, node, flags);
+
+ // If node is childless
+ if (node->value_size() == 0 && !node->first_node())
+ {
+ // Print childless node tag ending
+ *out = Ch('/'), ++out;
+ *out = Ch('>'), ++out;
+ }
+ else
+ {
+ // Print normal node tag ending
+ *out = Ch('>'), ++out;
+
+ // Test if node contains a single data node only (and no other nodes)
+ xml_node<Ch> *child = node->first_node();
+ if (!child)
+ {
+ // If node has no children, only print its value without indenting
+ out = copy_and_expand_chars(node->value(), node->value() + node->value_size(), Ch(0), out);
+ }
+ else if (child->next_sibling() == 0 && child->type() == node_data)
+ {
+ // If node has a sole data child, only print its value without indenting
+ out = copy_and_expand_chars(child->value(), child->value() + child->value_size(), Ch(0), out);
+ }
+ else
+ {
+ // Print all children with full indenting
+ if (!(flags & print_no_indenting))
+ *out = Ch('\n'), ++out;
+ out = print_children(out, node, flags, indent + 1);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ }
+
+ // Print node end
+ *out = Ch('<'), ++out;
+ *out = Ch('/'), ++out;
+ out = copy_chars(node->name(), node->name() + node->name_size(), out);
+ *out = Ch('>'), ++out;
+ }
+ return out;
+ }
+
+ // Print declaration node
+ template<class OutIt, class Ch>
+ inline OutIt print_declaration_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ // Print declaration start
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'), ++out;
+ *out = Ch('?'), ++out;
+ *out = Ch('x'), ++out;
+ *out = Ch('m'), ++out;
+ *out = Ch('l'), ++out;
+
+ // Print attributes
+ out = print_attributes(out, node, flags);
+
+ // Print declaration end
+ *out = Ch('?'), ++out;
+ *out = Ch('>'), ++out;
+
+ return out;
+ }
+
+ // Print comment node
+ template<class OutIt, class Ch>
+ inline OutIt print_comment_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_comment);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'), ++out;
+ *out = Ch('!'), ++out;
+ *out = Ch('-'), ++out;
+ *out = Ch('-'), ++out;
+ out = copy_chars(node->value(), node->value() + node->value_size(), out);
+ *out = Ch('-'), ++out;
+ *out = Ch('-'), ++out;
+ *out = Ch('>'), ++out;
+ return out;
+ }
+
+ // Print doctype node
+ template<class OutIt, class Ch>
+ inline OutIt print_doctype_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_doctype);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'), ++out;
+ *out = Ch('!'), ++out;
+ *out = Ch('D'), ++out;
+ *out = Ch('O'), ++out;
+ *out = Ch('C'), ++out;
+ *out = Ch('T'), ++out;
+ *out = Ch('Y'), ++out;
+ *out = Ch('P'), ++out;
+ *out = Ch('E'), ++out;
+ *out = Ch(' '), ++out;
+ out = copy_chars(node->value(), node->value() + node->value_size(), out);
+ *out = Ch('>'), ++out;
+ return out;
+ }
+
+ // Print pi node
+ template<class OutIt, class Ch>
+ inline OutIt print_pi_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ assert(node->type() == node_pi);
+ if (!(flags & print_no_indenting))
+ out = fill_chars(out, indent, Ch('\t'));
+ *out = Ch('<'), ++out;
+ *out = Ch('?'), ++out;
+ out = copy_chars(node->name(), node->name() + node->name_size(), out);
+ *out = Ch(' '), ++out;
+ out = copy_chars(node->value(), node->value() + node->value_size(), out);
+ *out = Ch('?'), ++out;
+ *out = Ch('>'), ++out;
+ return out;
+ }
+
+ // Print node
+ template<class OutIt, class Ch>
+ inline OutIt print_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
+ {
+ // Print proper node type
+ switch (node->type())
+ {
+
+ // Document
+ case node_document:
+ out = print_children(out, node, flags, indent);
+ break;
+
+ // Element
+ case node_element:
+ out = print_element_node(out, node, flags, indent);
+ break;
+
+ // Data
+ case node_data:
+ out = print_data_node(out, node, flags, indent);
+ break;
+
+ // CDATA
+ case node_cdata:
+ out = print_cdata_node(out, node, flags, indent);
+ break;
+
+ // Declaration
+ case node_declaration:
+ out = print_declaration_node(out, node, flags, indent);
+ break;
+
+ // Comment
+ case node_comment:
+ out = print_comment_node(out, node, flags, indent);
+ break;
+
+ // Doctype
+ case node_doctype:
+ out = print_doctype_node(out, node, flags, indent);
+ break;
+
+ // Pi
+ case node_pi:
+ out = print_pi_node(out, node, flags, indent);
+ break;
+
+ // Unknown
+ default:
+ assert(0);
+ break;
+ }
+
+ // If indenting not disabled, add line break after node
+ if (!(flags & print_no_indenting))
+ *out = Ch('\n'), ++out;
+
+ // Return modified iterator
+ return out;
+ }
+
+ }
+ //! \endcond
+
+ ///////////////////////////////////////////////////////////////////////////
+ // Printing
+
+ //! Prints XML to given output iterator.
+ //! \param out Output iterator to print to.
+ //! \param node Node to be printed. Pass xml_document to print entire document.
+ //! \param flags Flags controlling how XML is printed.
+ //! \return Output iterator pointing to position immediately after last character of printed text.
+ template<class OutIt, class Ch>
+ inline OutIt print(OutIt out, const xml_node<Ch> &node, int flags = 0)
+ {
+ return internal::print_node(out, &node, flags, 0);
+ }
+
+#ifndef RAPIDXML_NO_STREAMS
+
+ //! Prints XML to given output stream.
+ //! \param out Output stream to print to.
+ //! \param node Node to be printed. Pass xml_document to print entire document.
+ //! \param flags Flags controlling how XML is printed.
+ //! \return Output stream.
+ template<class Ch>
+ inline std::basic_ostream<Ch> &print(std::basic_ostream<Ch> &out, const xml_node<Ch> &node, int flags = 0)
+ {
+ print(std::ostream_iterator<Ch>(out), node, flags);
+ return out;
+ }
+
+ //! Prints formatted XML to given output stream. Uses default printing flags. Use print() function to customize printing process.
+ //! \param out Output stream to print to.
+ //! \param node Node to be printed.
+ //! \return Output stream.
+ template<class Ch>
+ inline std::basic_ostream<Ch> &operator <<(std::basic_ostream<Ch> &out, const xml_node<Ch> &node)
+ {
+ return print(out, node);
+ }
+
+#endif
+
+}
+
+#endif
diff --git a/lib/include/tnt/jama_cholesky.h b/lib/include/tnt/jama_cholesky.h
new file mode 100644
index 0000000..371d2f7
--- /dev/null
+++ b/lib/include/tnt/jama_cholesky.h
@@ -0,0 +1,258 @@
+#ifndef JAMA_CHOLESKY_H
+#define JAMA_CHOLESKY_H
+
+#include "math.h"
+ /* needed for sqrt() below. */
+
+
+namespace JAMA
+{
+
+using namespace TNT;
+
+/**
+ <P>
+ For a symmetric, positive definite matrix A, this function
+ computes the Cholesky factorization, i.e. it computes a lower
+ triangular matrix L such that A = L*L'.
+ If the matrix is not symmetric or positive definite, the function
+ computes only a partial decomposition. This can be tested with
+ the is_spd() flag.
+
+ <p>Typical usage looks like:
+ <pre>
+ Array2D<double> A(n,n);
+ Array2D<double> L;
+
+ ...
+
+ Cholesky<double> chol(A);
+
+ if (chol.is_spd())
+ L = chol.getL();
+
+ else
+ cout << "factorization was not complete.\n";
+
+ </pre>
+
+
+ <p>
+ (Adapted from JAMA, a Java Matrix Library, developed by jointly
+ by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
+
+ */
+
+template <class Real>
+class Cholesky
+{
+ Array2D<Real> L_; // lower triangular factor
+ int isspd; // 1 if matrix to be factored was SPD
+
+public:
+
+ Cholesky();
+ Cholesky(const Array2D<Real> &A);
+ Array2D<Real> getL() const;
+ Array1D<Real> solve(const Array1D<Real> &B);
+ Array2D<Real> solve(const Array2D<Real> &B);
+ int is_spd() const;
+
+};
+
+template <class Real>
+Cholesky<Real>::Cholesky() : L_(0,0), isspd(0) {}
+
+/**
+ @return 1, if original matrix to be factored was symmetric
+ positive-definite (SPD).
+*/
+template <class Real>
+int Cholesky<Real>::is_spd() const
+{
+ return isspd;
+}
+
+/**
+ @return the lower triangular factor, L, such that L*L'=A.
+*/
+template <class Real>
+Array2D<Real> Cholesky<Real>::getL() const
+{
+ return L_;
+}
+
+/**
+ Constructs a lower triangular matrix L, such that L*L'= A.
+ If A is not symmetric positive-definite (SPD), only a
+ partial factorization is performed. If is_spd()
+ evalutate true (1) then the factorizaiton was successful.
+*/
+template <class Real>
+Cholesky<Real>::Cholesky(const Array2D<Real> &A)
+{
+
+
+ int m = A.dim1();
+ int n = A.dim2();
+
+ isspd = (m == n);
+
+ if (m != n)
+ {
+ L_ = Array2D<Real>(0,0);
+ return;
+ }
+
+ L_ = Array2D<Real>(n,n);
+
+
+ // Main loop.
+ for (int j = 0; j < n; j++)
+ {
+ Real d(0.0);
+ for (int k = 0; k < j; k++)
+ {
+ Real s(0.0);
+ for (int i = 0; i < k; i++)
+ {
+ s += L_[k][i]*L_[j][i];
+ }
+ L_[j][k] = s = (A[j][k] - s)/L_[k][k];
+ d = d + s*s;
+ isspd = isspd && (A[k][j] == A[j][k]);
+ }
+ d = A[j][j] - d;
+ isspd = isspd && (d > 0.0);
+ L_[j][j] = sqrt(d > 0.0 ? d : 0.0);
+ for (int k = j+1; k < n; k++)
+ {
+ L_[j][k] = 0.0;
+ }
+ }
+}
+
+/**
+
+ Solve a linear system A*x = b, using the previously computed
+ cholesky factorization of A: L*L'.
+
+ @param B A Matrix with as many rows as A and any number of columns.
+ @return x so that L*L'*x = b. If b is nonconformat, or if A
+ was not symmetric posidtive definite, a null (0x0)
+ array is returned.
+*/
+template <class Real>
+Array1D<Real> Cholesky<Real>::solve(const Array1D<Real> &b)
+{
+ int n = L_.dim1();
+ if (b.dim1() != n)
+ return Array1D<Real>();
+
+
+ Array1D<Real> x = b.copy();
+
+
+ // Solve L*y = b;
+ for (int k = 0; k < n; k++)
+ {
+ for (int i = 0; i < k; i++)
+ x[k] -= x[i]*L_[k][i];
+ x[k] /= L_[k][k];
+
+ }
+
+ // Solve L'*X = Y;
+ for (int k = n-1; k >= 0; k--)
+ {
+ for (int i = k+1; i < n; i++)
+ x[k] -= x[i]*L_[i][k];
+ x[k] /= L_[k][k];
+ }
+
+ return x;
+}
+
+
+/**
+
+ Solve a linear system A*X = B, using the previously computed
+ cholesky factorization of A: L*L'.
+
+ @param B A Matrix with as many rows as A and any number of columns.
+ @return X so that L*L'*X = B. If B is nonconformat, or if A
+ was not symmetric posidtive definite, a null (0x0)
+ array is returned.
+*/
+template <class Real>
+Array2D<Real> Cholesky<Real>::solve(const Array2D<Real> &B)
+{
+ int n = L_.dim1();
+ if (B.dim1() != n)
+ return Array2D<Real>();
+
+
+ Array2D<Real> X = B.copy();
+ int nx = B.dim2();
+
+// Cleve's original code
+#if 0
+ // Solve L*Y = B;
+ for (int k = 0; k < n; k++) {
+ for (int i = k+1; i < n; i++) {
+ for (int j = 0; j < nx; j++) {
+ X[i][j] -= X[k][j]*L_[k][i];
+ }
+ }
+ for (int j = 0; j < nx; j++) {
+ X[k][j] /= L_[k][k];
+ }
+ }
+
+ // Solve L'*X = Y;
+ for (int k = n-1; k >= 0; k--) {
+ for (int j = 0; j < nx; j++) {
+ X[k][j] /= L_[k][k];
+ }
+ for (int i = 0; i < k; i++) {
+ for (int j = 0; j < nx; j++) {
+ X[i][j] -= X[k][j]*L_[k][i];
+ }
+ }
+ }
+#endif
+
+
+ // Solve L*y = b;
+ for (int j=0; j< nx; j++)
+ {
+ for (int k = 0; k < n; k++)
+ {
+ for (int i = 0; i < k; i++)
+ X[k][j] -= X[i][j]*L_[k][i];
+ X[k][j] /= L_[k][k];
+ }
+ }
+
+ // Solve L'*X = Y;
+ for (int j=0; j<nx; j++)
+ {
+ for (int k = n-1; k >= 0; k--)
+ {
+ for (int i = k+1; i < n; i++)
+ X[k][j] -= X[i][j]*L_[i][k];
+ X[k][j] /= L_[k][k];
+ }
+ }
+
+
+
+ return X;
+}
+
+
+}
+// namespace JAMA
+
+#endif
+// JAMA_CHOLESKY_H
diff --git a/lib/include/tnt/jama_eig.h b/lib/include/tnt/jama_eig.h
new file mode 100644
index 0000000..8e3572f
--- /dev/null
+++ b/lib/include/tnt/jama_eig.h
@@ -0,0 +1,1034 @@
+#ifndef JAMA_EIG_H
+#define JAMA_EIG_H
+
+
+#include "tnt_array1d.h"
+#include "tnt_array2d.h"
+#include "tnt_math_utils.h"
+
+#include <algorithm>
+// for min(), max() below
+
+#include <cmath>
+// for abs() below
+
+using namespace TNT;
+using namespace std;
+
+// Modification by Willem Jan Palenstijn, 2010-03-11:
+// Use std::min() instead of min(), std::max() instead of max()
+
+
+namespace JAMA
+{
+
+/**
+
+ Computes eigenvalues and eigenvectors of a real (non-complex)
+ matrix.
+<P>
+ If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
+ diagonal and the eigenvector matrix V is orthogonal. That is,
+ the diagonal values of D are the eigenvalues, and
+ V*V' = I, where I is the identity matrix. The columns of V
+ represent the eigenvectors in the sense that A*V = V*D.
+
+<P>
+ If A is not symmetric, then the eigenvalue matrix D is block diagonal
+ with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
+ a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex
+ eigenvalues look like
+<pre>
+
+ u + iv . . . . .
+ . u - iv . . . .
+ . . a + ib . . .
+ . . . a - ib . .
+ . . . . x .
+ . . . . . y
+</pre>
+ then D looks like
+<pre>
+
+ u v . . . .
+ -v u . . . .
+ . . a b . .
+ . . -b a . .
+ . . . . x .
+ . . . . . y
+</pre>
+ This keeps V a real matrix in both symmetric and non-symmetric
+ cases, and A*V = V*D.
+
+
+
+ <p>
+ The matrix V may be badly
+ conditioned, or even singular, so the validity of the equation
+ A = V*D*inverse(V) depends upon the condition number of V.
+
+ <p>
+ (Adapted from JAMA, a Java Matrix Library, developed by jointly
+ by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
+**/
+
+template <class Real>
+class Eigenvalue
+{
+
+
+ /** Row and column dimension (square matrix). */
+ int n;
+
+ int issymmetric; /* boolean*/
+
+ /** Arrays for internal storage of eigenvalues. */
+
+ TNT::Array1D<Real> d; /* real part */
+ TNT::Array1D<Real> e; /* img part */
+
+ /** Array for internal storage of eigenvectors. */
+ TNT::Array2D<Real> V;
+
+ /** Array for internal storage of nonsymmetric Hessenberg form.
+ @serial internal storage of nonsymmetric Hessenberg form.
+ */
+ TNT::Array2D<Real> H;
+
+
+ /** Working storage for nonsymmetric algorithm.
+ @serial working storage for nonsymmetric algorithm.
+ */
+ TNT::Array1D<Real> ort;
+
+
+ // Symmetric Householder reduction to tridiagonal form.
+
+ void tred2() {
+
+ // This is derived from the Algol procedures tred2 by
+ // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+ // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ for (int j = 0; j < n; j++) {
+ d[j] = V[n-1][j];
+ }
+
+ // Householder reduction to tridiagonal form.
+
+ for (int i = n-1; i > 0; i--) {
+
+ // Scale to avoid under/overflow.
+
+ Real scale = 0.0;
+ Real h = 0.0;
+ for (int k = 0; k < i; k++) {
+ scale = scale + abs(d[k]);
+ }
+ if (scale == 0.0) {
+ e[i] = d[i-1];
+ for (int j = 0; j < i; j++) {
+ d[j] = V[i-1][j];
+ V[i][j] = 0.0;
+ V[j][i] = 0.0;
+ }
+ } else {
+
+ // Generate Householder vector.
+
+ for (int k = 0; k < i; k++) {
+ d[k] /= scale;
+ h += d[k] * d[k];
+ }
+ Real f = d[i-1];
+ Real g = sqrt(h);
+ if (f > 0) {
+ g = -g;
+ }
+ e[i] = scale * g;
+ h = h - f * g;
+ d[i-1] = f - g;
+ for (int j = 0; j < i; j++) {
+ e[j] = 0.0;
+ }
+
+ // Apply similarity transformation to remaining columns.
+
+ for (int j = 0; j < i; j++) {
+ f = d[j];
+ V[j][i] = f;
+ g = e[j] + V[j][j] * f;
+ for (int k = j+1; k <= i-1; k++) {
+ g += V[k][j] * d[k];
+ e[k] += V[k][j] * f;
+ }
+ e[j] = g;
+ }
+ f = 0.0;
+ for (int j = 0; j < i; j++) {
+ e[j] /= h;
+ f += e[j] * d[j];
+ }
+ Real hh = f / (h + h);
+ for (int j = 0; j < i; j++) {
+ e[j] -= hh * d[j];
+ }
+ for (int j = 0; j < i; j++) {
+ f = d[j];
+ g = e[j];
+ for (int k = j; k <= i-1; k++) {
+ V[k][j] -= (f * e[k] + g * d[k]);
+ }
+ d[j] = V[i-1][j];
+ V[i][j] = 0.0;
+ }
+ }
+ d[i] = h;
+ }
+
+ // Accumulate transformations.
+
+ for (int i = 0; i < n-1; i++) {
+ V[n-1][i] = V[i][i];
+ V[i][i] = 1.0;
+ Real h = d[i+1];
+ if (h != 0.0) {
+ for (int k = 0; k <= i; k++) {
+ d[k] = V[k][i+1] / h;
+ }
+ for (int j = 0; j <= i; j++) {
+ Real g = 0.0;
+ for (int k = 0; k <= i; k++) {
+ g += V[k][i+1] * V[k][j];
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][j] -= g * d[k];
+ }
+ }
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][i+1] = 0.0;
+ }
+ }
+ for (int j = 0; j < n; j++) {
+ d[j] = V[n-1][j];
+ V[n-1][j] = 0.0;
+ }
+ V[n-1][n-1] = 1.0;
+ e[0] = 0.0;
+ }
+
+ // Symmetric tridiagonal QL algorithm.
+
+ void tql2 () {
+
+ // This is derived from the Algol procedures tql2, by
+ // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+ // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ for (int i = 1; i < n; i++) {
+ e[i-1] = e[i];
+ }
+ e[n-1] = 0.0;
+
+ Real f = 0.0;
+ Real tst1 = 0.0;
+ Real eps = pow(2.0,-52.0);
+ for (int l = 0; l < n; l++) {
+
+ // Find small subdiagonal element
+
+ tst1 = std::max(tst1,abs(d[l]) + abs(e[l]));
+ int m = l;
+
+ // Original while-loop from Java code
+ while (m < n) {
+ if (abs(e[m]) <= eps*tst1) {
+ break;
+ }
+ m++;
+ }
+
+
+ // If m == l, d[l] is an eigenvalue,
+ // otherwise, iterate.
+
+ if (m > l) {
+ int iter = 0;
+ do {
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Compute implicit shift
+
+ Real g = d[l];
+ Real p = (d[l+1] - g) / (2.0 * e[l]);
+ Real r = hypot(p,1.0);
+ if (p < 0) {
+ r = -r;
+ }
+ d[l] = e[l] / (p + r);
+ d[l+1] = e[l] * (p + r);
+ Real dl1 = d[l+1];
+ Real h = g - d[l];
+ for (int i = l+2; i < n; i++) {
+ d[i] -= h;
+ }
+ f = f + h;
+
+ // Implicit QL transformation.
+
+ p = d[m];
+ Real c = 1.0;
+ Real c2 = c;
+ Real c3 = c;
+ Real el1 = e[l+1];
+ Real s = 0.0;
+ Real s2 = 0.0;
+ for (int i = m-1; i >= l; i--) {
+ c3 = c2;
+ c2 = c;
+ s2 = s;
+ g = c * e[i];
+ h = c * p;
+ r = hypot(p,e[i]);
+ e[i+1] = s * r;
+ s = e[i] / r;
+ c = p / r;
+ p = c * d[i] - s * g;
+ d[i+1] = h + s * (c * g + s * d[i]);
+
+ // Accumulate transformation.
+
+ for (int k = 0; k < n; k++) {
+ h = V[k][i+1];
+ V[k][i+1] = s * V[k][i] + c * h;
+ V[k][i] = c * V[k][i] - s * h;
+ }
+ }
+ p = -s * s2 * c3 * el1 * e[l] / dl1;
+ e[l] = s * p;
+ d[l] = c * p;
+
+ // Check for convergence.
+
+ } while (abs(e[l]) > eps*tst1);
+ }
+ d[l] = d[l] + f;
+ e[l] = 0.0;
+ }
+
+ // Sort eigenvalues and corresponding vectors.
+
+ for (int i = 0; i < n-1; i++) {
+ int k = i;
+ Real p = d[i];
+ for (int j = i+1; j < n; j++) {
+ if (d[j] < p) {
+ k = j;
+ p = d[j];
+ }
+ }
+ if (k != i) {
+ d[k] = d[i];
+ d[i] = p;
+ for (int j = 0; j < n; j++) {
+ p = V[j][i];
+ V[j][i] = V[j][k];
+ V[j][k] = p;
+ }
+ }
+ }
+ }
+
+ // Nonsymmetric reduction to Hessenberg form.
+
+ void orthes () {
+
+ // This is derived from the Algol procedures orthes and ortran,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutines in EISPACK.
+
+ int low = 0;
+ int high = n-1;
+
+ for (int m = low+1; m <= high-1; m++) {
+
+ // Scale column.
+
+ Real scale = 0.0;
+ for (int i = m; i <= high; i++) {
+ scale = scale + abs(H[i][m-1]);
+ }
+ if (scale != 0.0) {
+
+ // Compute Householder transformation.
+
+ Real h = 0.0;
+ for (int i = high; i >= m; i--) {
+ ort[i] = H[i][m-1]/scale;
+ h += ort[i] * ort[i];
+ }
+ Real g = sqrt(h);
+ if (ort[m] > 0) {
+ g = -g;
+ }
+ h = h - ort[m] * g;
+ ort[m] = ort[m] - g;
+
+ // Apply Householder similarity transformation
+ // H = (I-u*u'/h)*H*(I-u*u')/h)
+
+ for (int j = m; j < n; j++) {
+ Real f = 0.0;
+ for (int i = high; i >= m; i--) {
+ f += ort[i]*H[i][j];
+ }
+ f = f/h;
+ for (int i = m; i <= high; i++) {
+ H[i][j] -= f*ort[i];
+ }
+ }
+
+ for (int i = 0; i <= high; i++) {
+ Real f = 0.0;
+ for (int j = high; j >= m; j--) {
+ f += ort[j]*H[i][j];
+ }
+ f = f/h;
+ for (int j = m; j <= high; j++) {
+ H[i][j] -= f*ort[j];
+ }
+ }
+ ort[m] = scale*ort[m];
+ H[m][m-1] = scale*g;
+ }
+ }
+
+ // Accumulate transformations (Algol's ortran).
+
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ V[i][j] = (i == j ? 1.0 : 0.0);
+ }
+ }
+
+ for (int m = high-1; m >= low+1; m--) {
+ if (H[m][m-1] != 0.0) {
+ for (int i = m+1; i <= high; i++) {
+ ort[i] = H[i][m-1];
+ }
+ for (int j = m; j <= high; j++) {
+ Real g = 0.0;
+ for (int i = m; i <= high; i++) {
+ g += ort[i] * V[i][j];
+ }
+ // Double division avoids possible underflow
+ g = (g / ort[m]) / H[m][m-1];
+ for (int i = m; i <= high; i++) {
+ V[i][j] += g * ort[i];
+ }
+ }
+ }
+ }
+ }
+
+
+ // Complex scalar division.
+
+ Real cdivr, cdivi;
+ void cdiv(Real xr, Real xi, Real yr, Real yi) {
+ Real r,d;
+ if (abs(yr) > abs(yi)) {
+ r = yi/yr;
+ d = yr + r*yi;
+ cdivr = (xr + r*xi)/d;
+ cdivi = (xi - r*xr)/d;
+ } else {
+ r = yr/yi;
+ d = yi + r*yr;
+ cdivr = (r*xr + xi)/d;
+ cdivi = (r*xi - xr)/d;
+ }
+ }
+
+
+ // Nonsymmetric reduction from Hessenberg to real Schur form.
+
+ void hqr2 () {
+
+ // This is derived from the Algol procedure hqr2,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ // Initialize
+
+ int nn = this->n;
+ int n = nn-1;
+ int low = 0;
+ int high = nn-1;
+ Real eps = pow(2.0,-52.0);
+ Real exshift = 0.0;
+ Real p=0,q=0,r=0,s=0,z=0,t,w,x,y;
+
+ // Store roots isolated by balanc and compute matrix norm
+
+ Real norm = 0.0;
+ for (int i = 0; i < nn; i++) {
+ if ((i < low) || (i > high)) {
+ d[i] = H[i][i];
+ e[i] = 0.0;
+ }
+ for (int j = std::max(i-1,0); j < nn; j++) {
+ norm = norm + abs(H[i][j]);
+ }
+ }
+
+ // Outer loop over eigenvalue index
+
+ int iter = 0;
+ while (n >= low) {
+
+ // Look for single small sub-diagonal element
+
+ int l = n;
+ while (l > low) {
+ s = abs(H[l-1][l-1]) + abs(H[l][l]);
+ if (s == 0.0) {
+ s = norm;
+ }
+ if (abs(H[l][l-1]) < eps * s) {
+ break;
+ }
+ l--;
+ }
+
+ // Check for convergence
+ // One root found
+
+ if (l == n) {
+ H[n][n] = H[n][n] + exshift;
+ d[n] = H[n][n];
+ e[n] = 0.0;
+ n--;
+ iter = 0;
+
+ // Two roots found
+
+ } else if (l == n-1) {
+ w = H[n][n-1] * H[n-1][n];
+ p = (H[n-1][n-1] - H[n][n]) / 2.0;
+ q = p * p + w;
+ z = sqrt(abs(q));
+ H[n][n] = H[n][n] + exshift;
+ H[n-1][n-1] = H[n-1][n-1] + exshift;
+ x = H[n][n];
+
+ // Real pair
+
+ if (q >= 0) {
+ if (p >= 0) {
+ z = p + z;
+ } else {
+ z = p - z;
+ }
+ d[n-1] = x + z;
+ d[n] = d[n-1];
+ if (z != 0.0) {
+ d[n] = x - w / z;
+ }
+ e[n-1] = 0.0;
+ e[n] = 0.0;
+ x = H[n][n-1];
+ s = abs(x) + abs(z);
+ p = x / s;
+ q = z / s;
+ r = sqrt(p * p+q * q);
+ p = p / r;
+ q = q / r;
+
+ // Row modification
+
+ for (int j = n-1; j < nn; j++) {
+ z = H[n-1][j];
+ H[n-1][j] = q * z + p * H[n][j];
+ H[n][j] = q * H[n][j] - p * z;
+ }
+
+ // Column modification
+
+ for (int i = 0; i <= n; i++) {
+ z = H[i][n-1];
+ H[i][n-1] = q * z + p * H[i][n];
+ H[i][n] = q * H[i][n] - p * z;
+ }
+
+ // Accumulate transformations
+
+ for (int i = low; i <= high; i++) {
+ z = V[i][n-1];
+ V[i][n-1] = q * z + p * V[i][n];
+ V[i][n] = q * V[i][n] - p * z;
+ }
+
+ // Complex pair
+
+ } else {
+ d[n-1] = x + p;
+ d[n] = x + p;
+ e[n-1] = z;
+ e[n] = -z;
+ }
+ n = n - 2;
+ iter = 0;
+
+ // No convergence yet
+
+ } else {
+
+ // Form shift
+
+ x = H[n][n];
+ y = 0.0;
+ w = 0.0;
+ if (l < n) {
+ y = H[n-1][n-1];
+ w = H[n][n-1] * H[n-1][n];
+ }
+
+ // Wilkinson's original ad hoc shift
+
+ if (iter == 10) {
+ exshift += x;
+ for (int i = low; i <= n; i++) {
+ H[i][i] -= x;
+ }
+ s = abs(H[n][n-1]) + abs(H[n-1][n-2]);
+ x = y = 0.75 * s;
+ w = -0.4375 * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+
+ if (iter == 30) {
+ s = (y - x) / 2.0;
+ s = s * s + w;
+ if (s > 0) {
+ s = sqrt(s);
+ if (y < x) {
+ s = -s;
+ }
+ s = x - w / ((y - x) / 2.0 + s);
+ for (int i = low; i <= n; i++) {
+ H[i][i] -= s;
+ }
+ exshift += s;
+ x = y = w = 0.964;
+ }
+ }
+
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Look for two consecutive small sub-diagonal elements
+
+ int m = n-2;
+ while (m >= l) {
+ z = H[m][m];
+ r = x - z;
+ s = y - z;
+ p = (r * s - w) / H[m+1][m] + H[m][m+1];
+ q = H[m+1][m+1] - z - r - s;
+ r = H[m+2][m+1];
+ s = abs(p) + abs(q) + abs(r);
+ p = p / s;
+ q = q / s;
+ r = r / s;
+ if (m == l) {
+ break;
+ }
+ if (abs(H[m][m-1]) * (abs(q) + abs(r)) <
+ eps * (abs(p) * (abs(H[m-1][m-1]) + abs(z) +
+ abs(H[m+1][m+1])))) {
+ break;
+ }
+ m--;
+ }
+
+ for (int i = m+2; i <= n; i++) {
+ H[i][i-2] = 0.0;
+ if (i > m+2) {
+ H[i][i-3] = 0.0;
+ }
+ }
+
+ // Double QR step involving rows l:n and columns m:n
+
+ for (int k = m; k <= n-1; k++) {
+ int notlast = (k != n-1);
+ if (k != m) {
+ p = H[k][k-1];
+ q = H[k+1][k-1];
+ r = (notlast ? H[k+2][k-1] : 0.0);
+ x = abs(p) + abs(q) + abs(r);
+ if (x != 0.0) {
+ p = p / x;
+ q = q / x;
+ r = r / x;
+ }
+ }
+ if (x == 0.0) {
+ break;
+ }
+ s = sqrt(p * p + q * q + r * r);
+ if (p < 0) {
+ s = -s;
+ }
+ if (s != 0) {
+ if (k != m) {
+ H[k][k-1] = -s * x;
+ } else if (l != m) {
+ H[k][k-1] = -H[k][k-1];
+ }
+ p = p + s;
+ x = p / s;
+ y = q / s;
+ z = r / s;
+ q = q / p;
+ r = r / p;
+
+ // Row modification
+
+ for (int j = k; j < nn; j++) {
+ p = H[k][j] + q * H[k+1][j];
+ if (notlast) {
+ p = p + r * H[k+2][j];
+ H[k+2][j] = H[k+2][j] - p * z;
+ }
+ H[k][j] = H[k][j] - p * x;
+ H[k+1][j] = H[k+1][j] - p * y;
+ }
+
+ // Column modification
+
+ for (int i = 0; i <= std::min(n,k+3); i++) {
+ p = x * H[i][k] + y * H[i][k+1];
+ if (notlast) {
+ p = p + z * H[i][k+2];
+ H[i][k+2] = H[i][k+2] - p * r;
+ }
+ H[i][k] = H[i][k] - p;
+ H[i][k+1] = H[i][k+1] - p * q;
+ }
+
+ // Accumulate transformations
+
+ for (int i = low; i <= high; i++) {
+ p = x * V[i][k] + y * V[i][k+1];
+ if (notlast) {
+ p = p + z * V[i][k+2];
+ V[i][k+2] = V[i][k+2] - p * r;
+ }
+ V[i][k] = V[i][k] - p;
+ V[i][k+1] = V[i][k+1] - p * q;
+ }
+ } // (s != 0)
+ } // k loop
+ } // check convergence
+ } // while (n >= low)
+
+ // Backsubstitute to find vectors of upper triangular form
+
+ if (norm == 0.0) {
+ return;
+ }
+
+ for (n = nn-1; n >= 0; n--) {
+ p = d[n];
+ q = e[n];
+
+ // Real vector
+
+ if (q == 0) {
+ int l = n;
+ H[n][n] = 1.0;
+ for (int i = n-1; i >= 0; i--) {
+ w = H[i][i] - p;
+ r = 0.0;
+ for (int j = l; j <= n; j++) {
+ r = r + H[i][j] * H[j][n];
+ }
+ if (e[i] < 0.0) {
+ z = w;
+ s = r;
+ } else {
+ l = i;
+ if (e[i] == 0.0) {
+ if (w != 0.0) {
+ H[i][n] = -r / w;
+ } else {
+ H[i][n] = -r / (eps * norm);
+ }
+
+ // Solve real equations
+
+ } else {
+ x = H[i][i+1];
+ y = H[i+1][i];
+ q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
+ t = (x * s - z * r) / q;
+ H[i][n] = t;
+ if (abs(x) > abs(z)) {
+ H[i+1][n] = (-r - w * t) / x;
+ } else {
+ H[i+1][n] = (-s - y * t) / z;
+ }
+ }
+
+ // Overflow control
+
+ t = abs(H[i][n]);
+ if ((eps * t) * t > 1) {
+ for (int j = i; j <= n; j++) {
+ H[j][n] = H[j][n] / t;
+ }
+ }
+ }
+ }
+
+ // Complex vector
+
+ } else if (q < 0) {
+ int l = n-1;
+
+ // Last vector component imaginary so matrix is triangular
+
+ if (abs(H[n][n-1]) > abs(H[n-1][n])) {
+ H[n-1][n-1] = q / H[n][n-1];
+ H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
+ } else {
+ cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
+ H[n-1][n-1] = cdivr;
+ H[n-1][n] = cdivi;
+ }
+ H[n][n-1] = 0.0;
+ H[n][n] = 1.0;
+ for (int i = n-2; i >= 0; i--) {
+ Real ra,sa,vr,vi;
+ ra = 0.0;
+ sa = 0.0;
+ for (int j = l; j <= n; j++) {
+ ra = ra + H[i][j] * H[j][n-1];
+ sa = sa + H[i][j] * H[j][n];
+ }
+ w = H[i][i] - p;
+
+ if (e[i] < 0.0) {
+ z = w;
+ r = ra;
+ s = sa;
+ } else {
+ l = i;
+ if (e[i] == 0) {
+ cdiv(-ra,-sa,w,q);
+ H[i][n-1] = cdivr;
+ H[i][n] = cdivi;
+ } else {
+
+ // Solve complex equations
+
+ x = H[i][i+1];
+ y = H[i+1][i];
+ vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
+ vi = (d[i] - p) * 2.0 * q;
+ if ((vr == 0.0) && (vi == 0.0)) {
+ vr = eps * norm * (abs(w) + abs(q) +
+ abs(x) + abs(y) + abs(z));
+ }
+ cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+ H[i][n-1] = cdivr;
+ H[i][n] = cdivi;
+ if (abs(x) > (abs(z) + abs(q))) {
+ H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
+ H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
+ } else {
+ cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
+ H[i+1][n-1] = cdivr;
+ H[i+1][n] = cdivi;
+ }
+ }
+
+ // Overflow control
+
+ t = std::max(abs(H[i][n-1]),abs(H[i][n]));
+ if ((eps * t) * t > 1) {
+ for (int j = i; j <= n; j++) {
+ H[j][n-1] = H[j][n-1] / t;
+ H[j][n] = H[j][n] / t;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Vectors of isolated roots
+
+ for (int i = 0; i < nn; i++) {
+ if (i < low || i > high) {
+ for (int j = i; j < nn; j++) {
+ V[i][j] = H[i][j];
+ }
+ }
+ }
+
+ // Back transformation to get eigenvectors of original matrix
+
+ for (int j = nn-1; j >= low; j--) {
+ for (int i = low; i <= high; i++) {
+ z = 0.0;
+ for (int k = low; k <= std::min(j,high); k++) {
+ z = z + V[i][k] * H[k][j];
+ }
+ V[i][j] = z;
+ }
+ }
+ }
+
+public:
+
+
+ /** Check for symmetry, then construct the eigenvalue decomposition
+ @param A Square real (non-complex) matrix
+ */
+
+ Eigenvalue(const TNT::Array2D<Real> &A) {
+ n = A.dim2();
+ V = Array2D<Real>(n,n);
+ d = Array1D<Real>(n);
+ e = Array1D<Real>(n);
+
+ issymmetric = 1;
+ for (int j = 0; (j < n) && issymmetric; j++) {
+ for (int i = 0; (i < n) && issymmetric; i++) {
+ issymmetric = (A[i][j] == A[j][i]);
+ }
+ }
+
+ if (issymmetric) {
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ V[i][j] = A[i][j];
+ }
+ }
+
+ // Tridiagonalize.
+ tred2();
+
+ // Diagonalize.
+ tql2();
+
+ } else {
+ H = TNT::Array2D<Real>(n,n);
+ ort = TNT::Array1D<Real>(n);
+
+ for (int j = 0; j < n; j++) {
+ for (int i = 0; i < n; i++) {
+ H[i][j] = A[i][j];
+ }
+ }
+
+ // Reduce to Hessenberg form.
+ orthes();
+
+ // Reduce Hessenberg to real Schur form.
+ hqr2();
+ }
+ }
+
+
+ /** Return the eigenvector matrix
+ @return V
+ */
+
+ void getV (TNT::Array2D<Real> &V_) {
+ V_ = V;
+ return;
+ }
+
+ /** Return the real parts of the eigenvalues
+ @return real(diag(D))
+ */
+
+ void getRealEigenvalues (TNT::Array1D<Real> &d_) {
+ d_ = d;
+ return ;
+ }
+
+ /** Return the imaginary parts of the eigenvalues
+ in parameter e_.
+
+ @pararm e_: new matrix with imaginary parts of the eigenvalues.
+ */
+ void getImagEigenvalues (TNT::Array1D<Real> &e_) {
+ e_ = e;
+ return;
+ }
+
+
+/**
+ Computes the block diagonal eigenvalue matrix.
+ If the original matrix A is not symmetric, then the eigenvalue
+ matrix D is block diagonal with the real eigenvalues in 1-by-1
+ blocks and any complex eigenvalues,
+ a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex
+ eigenvalues look like
+<pre>
+
+ u + iv . . . . .
+ . u - iv . . . .
+ . . a + ib . . .
+ . . . a - ib . .
+ . . . . x .
+ . . . . . y
+</pre>
+ then D looks like
+<pre>
+
+ u v . . . .
+ -v u . . . .
+ . . a b . .
+ . . -b a . .
+ . . . . x .
+ . . . . . y
+</pre>
+ This keeps V a real matrix in both symmetric and non-symmetric
+ cases, and A*V = V*D.
+
+ @param D: upon return, the matrix is filled with the block diagonal
+ eigenvalue matrix.
+
+*/
+ void getD (TNT::Array2D<Real> &D) {
+ D = Array2D<Real>(n,n);
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ D[i][j] = 0.0;
+ }
+ D[i][i] = d[i];
+ if (e[i] > 0) {
+ D[i][i+1] = e[i];
+ } else if (e[i] < 0) {
+ D[i][i-1] = e[i];
+ }
+ }
+ }
+};
+
+} //namespace JAMA
+
+
+#endif
+// JAMA_EIG_H
diff --git a/lib/include/tnt/jama_lu.h b/lib/include/tnt/jama_lu.h
new file mode 100644
index 0000000..e95b433
--- /dev/null
+++ b/lib/include/tnt/jama_lu.h
@@ -0,0 +1,323 @@
+#ifndef JAMA_LU_H
+#define JAMA_LU_H
+
+#include "tnt.h"
+#include <algorithm>
+//for min(), max() below
+
+using namespace TNT;
+using namespace std;
+
+
+// Modification by Willem Jan Palenstijn, 2010-03-11:
+// Use std::min() instead of min()
+
+namespace JAMA
+{
+
+ /** LU Decomposition.
+ <P>
+ For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
+ unit lower triangular matrix L, an n-by-n upper triangular matrix U,
+ and a permutation vector piv of length m so that A(piv,:) = L*U.
+ If m < n, then L is m-by-m and U is m-by-n.
+ <P>
+ The LU decompostion with pivoting always exists, even if the matrix is
+ singular, so the constructor will never fail. The primary use of the
+ LU decomposition is in the solution of square systems of simultaneous
+ linear equations. This will fail if isNonsingular() returns false.
+ */
+template <class Real>
+class LU
+{
+
+
+
+ /* Array for internal storage of decomposition. */
+ Array2D<Real> LU_;
+ int m, n, pivsign;
+ Array1D<int> piv;
+
+
+ Array2D<Real> permute_copy(const Array2D<Real> &A,
+ const Array1D<int> &piv, int j0, int j1)
+ {
+ int piv_length = piv.dim();
+
+ Array2D<Real> X(piv_length, j1-j0+1);
+
+
+ for (int i = 0; i < piv_length; i++)
+ for (int j = j0; j <= j1; j++)
+ X[i][j-j0] = A[piv[i]][j];
+
+ return X;
+ }
+
+ Array1D<Real> permute_copy(const Array1D<Real> &A,
+ const Array1D<int> &piv)
+ {
+ int piv_length = piv.dim();
+ if (piv_length != A.dim())
+ return Array1D<Real>();
+
+ Array1D<Real> x(piv_length);
+
+
+ for (int i = 0; i < piv_length; i++)
+ x[i] = A[piv[i]];
+
+ return x;
+ }
+
+
+ public :
+
+ /** LU Decomposition
+ @param A Rectangular matrix
+ @return LU Decomposition object to access L, U and piv.
+ */
+
+ LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()),
+ piv(A.dim1())
+
+ {
+
+ // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
+
+
+ for (int i = 0; i < m; i++) {
+ piv[i] = i;
+ }
+ pivsign = 1;
+ Real *LUrowi = 0;;
+ Array1D<Real> LUcolj(m);
+
+ // Outer loop.
+
+ for (int j = 0; j < n; j++) {
+
+ // Make a copy of the j-th column to localize references.
+
+ for (int i = 0; i < m; i++) {
+ LUcolj[i] = LU_[i][j];
+ }
+
+ // Apply previous transformations.
+
+ for (int i = 0; i < m; i++) {
+ LUrowi = LU_[i];
+
+ // Most of the time is spent in the following dot product.
+
+ int kmax = std::min(i,j);
+ double s = 0.0;
+ for (int k = 0; k < kmax; k++) {
+ s += LUrowi[k]*LUcolj[k];
+ }
+
+ LUrowi[j] = LUcolj[i] -= s;
+ }
+
+ // Find pivot and exchange if necessary.
+
+ int p = j;
+ for (int i = j+1; i < m; i++) {
+ if (abs(LUcolj[i]) > abs(LUcolj[p])) {
+ p = i;
+ }
+ }
+ if (p != j) {
+ int k=0;
+ for (k = 0; k < n; k++) {
+ double t = LU_[p][k];
+ LU_[p][k] = LU_[j][k];
+ LU_[j][k] = t;
+ }
+ k = piv[p];
+ piv[p] = piv[j];
+ piv[j] = k;
+ pivsign = -pivsign;
+ }
+
+ // Compute multipliers.
+
+ if ((j < m) && (LU_[j][j] != 0.0)) {
+ for (int i = j+1; i < m; i++) {
+ LU_[i][j] /= LU_[j][j];
+ }
+ }
+ }
+ }
+
+
+ /** Is the matrix nonsingular?
+ @return 1 (true) if upper triangular factor U (and hence A)
+ is nonsingular, 0 otherwise.
+ */
+
+ int isNonsingular () {
+ for (int j = 0; j < n; j++) {
+ if (LU_[j][j] == 0)
+ return 0;
+ }
+ return 1;
+ }
+
+ /** Return lower triangular factor
+ @return L
+ */
+
+ Array2D<Real> getL () {
+ Array2D<Real> L_(m,n);
+ for (int i = 0; i < m; i++) {
+ for (int j = 0; j < n; j++) {
+ if (i > j) {
+ L_[i][j] = LU_[i][j];
+ } else if (i == j) {
+ L_[i][j] = 1.0;
+ } else {
+ L_[i][j] = 0.0;
+ }
+ }
+ }
+ return L_;
+ }
+
+ /** Return upper triangular factor
+ @return U portion of LU factorization.
+ */
+
+ Array2D<Real> getU () {
+ Array2D<Real> U_(n,n);
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ if (i <= j) {
+ U_[i][j] = LU_[i][j];
+ } else {
+ U_[i][j] = 0.0;
+ }
+ }
+ }
+ return U_;
+ }
+
+ /** Return pivot permutation vector
+ @return piv
+ */
+
+ Array1D<int> getPivot () {
+ return piv;
+ }
+
+
+ /** Compute determinant using LU factors.
+ @return determinant of A, or 0 if A is not square.
+ */
+
+ Real det () {
+ if (m != n) {
+ return Real(0);
+ }
+ Real d = Real(pivsign);
+ for (int j = 0; j < n; j++) {
+ d *= LU_[j][j];
+ }
+ return d;
+ }
+
+ /** Solve A*X = B
+ @param B A Matrix with as many rows as A and any number of columns.
+ @return X so that L*U*X = B(piv,:), if B is nonconformant, returns
+ 0x0 (null) array.
+ */
+
+ Array2D<Real> solve (const Array2D<Real> &B)
+ {
+
+ /* Dimensions: A is mxn, X is nxk, B is mxk */
+
+ if (B.dim1() != m) {
+ return Array2D<Real>(0,0);
+ }
+ if (!isNonsingular()) {
+ return Array2D<Real>(0,0);
+ }
+
+ // Copy right hand side with pivoting
+ int nx = B.dim2();
+
+
+ Array2D<Real> X = permute_copy(B, piv, 0, nx-1);
+
+ // Solve L*Y = B(piv,:)
+ for (int k = 0; k < n; k++) {
+ for (int i = k+1; i < n; i++) {
+ for (int j = 0; j < nx; j++) {
+ X[i][j] -= X[k][j]*LU_[i][k];
+ }
+ }
+ }
+ // Solve U*X = Y;
+ for (int k = n-1; k >= 0; k--) {
+ for (int j = 0; j < nx; j++) {
+ X[k][j] /= LU_[k][k];
+ }
+ for (int i = 0; i < k; i++) {
+ for (int j = 0; j < nx; j++) {
+ X[i][j] -= X[k][j]*LU_[i][k];
+ }
+ }
+ }
+ return X;
+ }
+
+
+ /** Solve A*x = b, where x and b are vectors of length equal
+ to the number of rows in A.
+
+ @param b a vector (Array1D> of length equal to the first dimension
+ of A.
+ @return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant,
+ returns 0x0 (null) array.
+ */
+
+ Array1D<Real> solve (const Array1D<Real> &b)
+ {
+
+ /* Dimensions: A is mxn, X is nxk, B is mxk */
+
+ if (b.dim1() != m) {
+ return Array1D<Real>();
+ }
+ if (!isNonsingular()) {
+ return Array1D<Real>();
+ }
+
+
+ Array1D<Real> x = permute_copy(b, piv);
+
+ // Solve L*Y = B(piv)
+ for (int k = 0; k < n; k++) {
+ for (int i = k+1; i < n; i++) {
+ x[i] -= x[k]*LU_[i][k];
+ }
+ }
+
+ // Solve U*X = Y;
+ for (int k = n-1; k >= 0; k--) {
+ x[k] /= LU_[k][k];
+ for (int i = 0; i < k; i++)
+ x[i] -= x[k]*LU_[i][k];
+ }
+
+
+ return x;
+ }
+
+}; /* class LU */
+
+} /* namespace JAMA */
+
+#endif
+/* JAMA_LU_H */
diff --git a/lib/include/tnt/jama_qr.h b/lib/include/tnt/jama_qr.h
new file mode 100644
index 0000000..98d37f5
--- /dev/null
+++ b/lib/include/tnt/jama_qr.h
@@ -0,0 +1,326 @@
+#ifndef JAMA_QR_H
+#define JAMA_QR_H
+
+#include "tnt_array1d.h"
+#include "tnt_array2d.h"
+#include "tnt_math_utils.h"
+
+namespace JAMA
+{
+
+/**
+<p>
+ Classical QR Decompisition:
+ for an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
+ orthogonal matrix Q and an n-by-n upper triangular matrix R so that
+ A = Q*R.
+<P>
+ The QR decompostion always exists, even if the matrix does not have
+ full rank, so the constructor will never fail. The primary use of the
+ QR decomposition is in the least squares solution of nonsquare systems
+ of simultaneous linear equations. This will fail if isFullRank()
+ returns 0 (false).
+
+<p>
+ The Q and R factors can be retrived via the getQ() and getR()
+ methods. Furthermore, a solve() method is provided to find the
+ least squares solution of Ax=b using the QR factors.
+
+ <p>
+ (Adapted from JAMA, a Java Matrix Library, developed by jointly
+ by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
+*/
+
+template <class Real>
+class QR {
+
+
+ /** Array for internal storage of decomposition.
+ @serial internal array storage.
+ */
+
+ TNT::Array2D<Real> QR_;
+
+ /** Row and column dimensions.
+ @serial column dimension.
+ @serial row dimension.
+ */
+ int m, n;
+
+ /** Array for internal storage of diagonal of R.
+ @serial diagonal of R.
+ */
+ TNT::Array1D<Real> Rdiag;
+
+
+public:
+
+/**
+ Create a QR factorization object for A.
+
+ @param A rectangular (m>=n) matrix.
+*/
+ QR(const TNT::Array2D<Real> &A) /* constructor */
+ {
+ QR_ = A.copy();
+ m = A.dim1();
+ n = A.dim2();
+ Rdiag = TNT::Array1D<Real>(n);
+ int i=0, j=0, k=0;
+
+ // Main loop.
+ for (k = 0; k < n; k++) {
+ // Compute 2-norm of k-th column without under/overflow.
+ Real nrm = 0;
+ for (i = k; i < m; i++) {
+ nrm = TNT::hypot(nrm,QR_[i][k]);
+ }
+
+ if (nrm != 0.0) {
+ // Form k-th Householder vector.
+ if (QR_[k][k] < 0) {
+ nrm = -nrm;
+ }
+ for (i = k; i < m; i++) {
+ QR_[i][k] /= nrm;
+ }
+ QR_[k][k] += 1.0;
+
+ // Apply transformation to remaining columns.
+ for (j = k+1; j < n; j++) {
+ Real s = 0.0;
+ for (i = k; i < m; i++) {
+ s += QR_[i][k]*QR_[i][j];
+ }
+ s = -s/QR_[k][k];
+ for (i = k; i < m; i++) {
+ QR_[i][j] += s*QR_[i][k];
+ }
+ }
+ }
+ Rdiag[k] = -nrm;
+ }
+ }
+
+
+/**
+ Flag to denote the matrix is of full rank.
+
+ @return 1 if matrix is full rank, 0 otherwise.
+*/
+ int isFullRank() const
+ {
+ for (int j = 0; j < n; j++)
+ {
+ if (Rdiag[j] == 0)
+ return 0;
+ }
+ return 1;
+ }
+
+
+
+
+ /**
+
+ Retreive the Householder vectors from QR factorization
+ @returns lower trapezoidal matrix whose columns define the reflections
+ */
+
+ TNT::Array2D<Real> getHouseholder (void) const
+ {
+ TNT::Array2D<Real> H(m,n);
+
+ /* note: H is completely filled in by algorithm, so
+ initializaiton of H is not necessary.
+ */
+ for (int i = 0; i < m; i++)
+ {
+ for (int j = 0; j < n; j++)
+ {
+ if (i >= j) {
+ H[i][j] = QR_[i][j];
+ } else {
+ H[i][j] = 0.0;
+ }
+ }
+ }
+ return H;
+ }
+
+
+
+ /** Return the upper triangular factor, R, of the QR factorization
+ @return R
+ */
+
+ TNT::Array2D<Real> getR() const
+ {
+ TNT::Array2D<Real> R(n,n);
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ if (i < j) {
+ R[i][j] = QR_[i][j];
+ } else if (i == j) {
+ R[i][j] = Rdiag[i];
+ } else {
+ R[i][j] = 0.0;
+ }
+ }
+ }
+ return R;
+ }
+
+
+
+
+
+ /**
+ Generate and return the (economy-sized) orthogonal factor
+ @param Q the (ecnomy-sized) orthogonal factor (Q*R=A).
+ */
+
+ TNT::Array2D<Real> getQ() const
+ {
+ int i=0, j=0, k=0;
+
+ TNT::Array2D<Real> Q(m,n);
+ for (k = n-1; k >= 0; k--) {
+ for (i = 0; i < m; i++) {
+ Q[i][k] = 0.0;
+ }
+ Q[k][k] = 1.0;
+ for (j = k; j < n; j++) {
+ if (QR_[k][k] != 0) {
+ Real s = 0.0;
+ for (i = k; i < m; i++) {
+ s += QR_[i][k]*Q[i][j];
+ }
+ s = -s/QR_[k][k];
+ for (i = k; i < m; i++) {
+ Q[i][j] += s*QR_[i][k];
+ }
+ }
+ }
+ }
+ return Q;
+ }
+
+
+ /** Least squares solution of A*x = b
+ @param B m-length array (vector).
+ @return x n-length array (vector) that minimizes the two norm of Q*R*X-B.
+ If B is non-conformant, or if QR.isFullRank() is false,
+ the routine returns a null (0-length) vector.
+ */
+
+ TNT::Array1D<Real> solve(const TNT::Array1D<Real> &b) const
+ {
+ if (b.dim1() != m) /* arrays must be conformant */
+ return TNT::Array1D<Real>();
+
+ if ( !isFullRank() ) /* matrix is rank deficient */
+ {
+ return TNT::Array1D<Real>();
+ }
+
+ TNT::Array1D<Real> x = b.copy();
+
+ // Compute Y = transpose(Q)*b
+ for (int k = 0; k < n; k++)
+ {
+ Real s = 0.0;
+ for (int i = k; i < m; i++)
+ {
+ s += QR_[i][k]*x[i];
+ }
+ s = -s/QR_[k][k];
+ for (int i = k; i < m; i++)
+ {
+ x[i] += s*QR_[i][k];
+ }
+ }
+ // Solve R*X = Y;
+ for (int k = n-1; k >= 0; k--)
+ {
+ x[k] /= Rdiag[k];
+ for (int i = 0; i < k; i++) {
+ x[i] -= x[k]*QR_[i][k];
+ }
+ }
+
+
+ /* return n x nx portion of X */
+ TNT::Array1D<Real> x_(n);
+ for (int i=0; i<n; i++)
+ x_[i] = x[i];
+
+ return x_;
+ }
+
+ /** Least squares solution of A*X = B
+ @param B m x k Array (must conform).
+ @return X n x k Array that minimizes the two norm of Q*R*X-B. If
+ B is non-conformant, or if QR.isFullRank() is false,
+ the routine returns a null (0x0) array.
+ */
+
+ TNT::Array2D<Real> solve(const TNT::Array2D<Real> &B) const
+ {
+ if (B.dim1() != m) /* arrays must be conformant */
+ return TNT::Array2D<Real>(0,0);
+
+ if ( !isFullRank() ) /* matrix is rank deficient */
+ {
+ return TNT::Array2D<Real>(0,0);
+ }
+
+ int nx = B.dim2();
+ TNT::Array2D<Real> X = B.copy();
+ int i=0, j=0, k=0;
+
+ // Compute Y = transpose(Q)*B
+ for (k = 0; k < n; k++) {
+ for (j = 0; j < nx; j++) {
+ Real s = 0.0;
+ for (i = k; i < m; i++) {
+ s += QR_[i][k]*X[i][j];
+ }
+ s = -s/QR_[k][k];
+ for (i = k; i < m; i++) {
+ X[i][j] += s*QR_[i][k];
+ }
+ }
+ }
+ // Solve R*X = Y;
+ for (k = n-1; k >= 0; k--) {
+ for (j = 0; j < nx; j++) {
+ X[k][j] /= Rdiag[k];
+ }
+ for (i = 0; i < k; i++) {
+ for (j = 0; j < nx; j++) {
+ X[i][j] -= X[k][j]*QR_[i][k];
+ }
+ }
+ }
+
+
+ /* return n x nx portion of X */
+ TNT::Array2D<Real> X_(n,nx);
+ for (i=0; i<n; i++)
+ for (j=0; j<nx; j++)
+ X_[i][j] = X[i][j];
+
+ return X_;
+ }
+
+
+};
+
+
+}
+// namespace JAMA
+
+#endif
+// JAMA_QR__H
+
diff --git a/lib/include/tnt/jama_svd.h b/lib/include/tnt/jama_svd.h
new file mode 100644
index 0000000..72ce3a7
--- /dev/null
+++ b/lib/include/tnt/jama_svd.h
@@ -0,0 +1,543 @@
+#ifndef JAMA_SVD_H
+#define JAMA_SVD_H
+
+
+#include "tnt_array1d.h"
+#include "tnt_array1d_utils.h"
+#include "tnt_array2d.h"
+#include "tnt_array2d_utils.h"
+#include "tnt_math_utils.h"
+
+#include <algorithm>
+// for min(), max() below
+#include <cmath>
+// for abs() below
+
+using namespace TNT;
+using namespace std;
+
+
+// Modification by Willem Jan Palenstijn, 2010-03-11:
+// Use std::min() instead of min(), std::max() instead of max()
+
+
+namespace JAMA
+{
+ /** Singular Value Decomposition.
+ <P>
+ For an m-by-n matrix A with m >= n, the singular value decomposition is
+ an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
+ an n-by-n orthogonal matrix V so that A = U*S*V'.
+ <P>
+ The singular values, sigma[k] = S[k][k], are ordered so that
+ sigma[0] >= sigma[1] >= ... >= sigma[n-1].
+ <P>
+ The singular value decompostion always exists, so the constructor will
+ never fail. The matrix condition number and the effective numerical
+ rank can be computed from this decomposition.
+
+ <p>
+ (Adapted from JAMA, a Java Matrix Library, developed by jointly
+ by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
+ */
+template <class Real>
+class SVD
+{
+
+
+ Array2D<Real> U, V;
+ Array1D<Real> s;
+ int m, n;
+
+ public:
+
+
+ SVD (const Array2D<Real> &Arg) {
+
+
+ m = Arg.dim1();
+ n = Arg.dim2();
+ int nu = std::min(m,n);
+ s = Array1D<Real>(std::min(m+1,n));
+ U = Array2D<Real>(m, nu, Real(0));
+ V = Array2D<Real>(n,n);
+ Array1D<Real> e(n);
+ Array1D<Real> work(m);
+ Array2D<Real> A(Arg.copy());
+ int wantu = 1; /* boolean */
+ int wantv = 1; /* boolean */
+ int i=0, j=0, k=0;
+
+ // Reduce A to bidiagonal form, storing the diagonal elements
+ // in s and the super-diagonal elements in e.
+
+ int nct = std::min(m-1,n);
+ int nrt = std::max(0,std::min(n-2,m));
+ for (k = 0; k < std::max(nct,nrt); k++) {
+ if (k < nct) {
+
+ // Compute the transformation for the k-th column and
+ // place the k-th diagonal in s[k].
+ // Compute 2-norm of k-th column without under/overflow.
+ s[k] = 0;
+ for (i = k; i < m; i++) {
+ s[k] = hypot(s[k],A[i][k]);
+ }
+ if (s[k] != 0.0) {
+ if (A[k][k] < 0.0) {
+ s[k] = -s[k];
+ }
+ for (i = k; i < m; i++) {
+ A[i][k] /= s[k];
+ }
+ A[k][k] += 1.0;
+ }
+ s[k] = -s[k];
+ }
+ for (j = k+1; j < n; j++) {
+ if ((k < nct) && (s[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ Real t(0.0);
+ for (i = k; i < m; i++) {
+ t += A[i][k]*A[i][j];
+ }
+ t = -t/A[k][k];
+ for (i = k; i < m; i++) {
+ A[i][j] += t*A[i][k];
+ }
+ }
+
+ // Place the k-th row of A into e for the
+ // subsequent calculation of the row transformation.
+
+ e[j] = A[k][j];
+ }
+ if (wantu & (k < nct)) {
+
+ // Place the transformation in U for subsequent back
+ // multiplication.
+
+ for (i = k; i < m; i++) {
+ U[i][k] = A[i][k];
+ }
+ }
+ if (k < nrt) {
+
+ // Compute the k-th row transformation and place the
+ // k-th super-diagonal in e[k].
+ // Compute 2-norm without under/overflow.
+ e[k] = 0;
+ for (i = k+1; i < n; i++) {
+ e[k] = hypot(e[k],e[i]);
+ }
+ if (e[k] != 0.0) {
+ if (e[k+1] < 0.0) {
+ e[k] = -e[k];
+ }
+ for (i = k+1; i < n; i++) {
+ e[i] /= e[k];
+ }
+ e[k+1] += 1.0;
+ }
+ e[k] = -e[k];
+ if ((k+1 < m) & (e[k] != 0.0)) {
+
+ // Apply the transformation.
+
+ for (i = k+1; i < m; i++) {
+ work[i] = 0.0;
+ }
+ for (j = k+1; j < n; j++) {
+ for (i = k+1; i < m; i++) {
+ work[i] += e[j]*A[i][j];
+ }
+ }
+ for (j = k+1; j < n; j++) {
+ Real t(-e[j]/e[k+1]);
+ for (i = k+1; i < m; i++) {
+ A[i][j] += t*work[i];
+ }
+ }
+ }
+ if (wantv) {
+
+ // Place the transformation in V for subsequent
+ // back multiplication.
+
+ for (i = k+1; i < n; i++) {
+ V[i][k] = e[i];
+ }
+ }
+ }
+ }
+
+ // Set up the final bidiagonal matrix or order p.
+
+ int p = std::min(n,m+1);
+ if (nct < n) {
+ s[nct] = A[nct][nct];
+ }
+ if (m < p) {
+ s[p-1] = 0.0;
+ }
+ if (nrt+1 < p) {
+ e[nrt] = A[nrt][p-1];
+ }
+ e[p-1] = 0.0;
+
+ // If required, generate U.
+
+ if (wantu) {
+ for (j = nct; j < nu; j++) {
+ for (i = 0; i < m; i++) {
+ U[i][j] = 0.0;
+ }
+ U[j][j] = 1.0;
+ }
+ for (k = nct-1; k >= 0; k--) {
+ if (s[k] != 0.0) {
+ for (j = k+1; j < nu; j++) {
+ Real t(0.0);
+ for (i = k; i < m; i++) {
+ t += U[i][k]*U[i][j];
+ }
+ t = -t/U[k][k];
+ for (i = k; i < m; i++) {
+ U[i][j] += t*U[i][k];
+ }
+ }
+ for (i = k; i < m; i++ ) {
+ U[i][k] = -U[i][k];
+ }
+ U[k][k] = 1.0 + U[k][k];
+ for (i = 0; i < k-1; i++) {
+ U[i][k] = 0.0;
+ }
+ } else {
+ for (i = 0; i < m; i++) {
+ U[i][k] = 0.0;
+ }
+ U[k][k] = 1.0;
+ }
+ }
+ }
+
+ // If required, generate V.
+
+ if (wantv) {
+ for (k = n-1; k >= 0; k--) {
+ if ((k < nrt) & (e[k] != 0.0)) {
+ for (j = k+1; j < nu; j++) {
+ Real t(0.0);
+ for (i = k+1; i < n; i++) {
+ t += V[i][k]*V[i][j];
+ }
+ t = -t/V[k+1][k];
+ for (i = k+1; i < n; i++) {
+ V[i][j] += t*V[i][k];
+ }
+ }
+ }
+ for (i = 0; i < n; i++) {
+ V[i][k] = 0.0;
+ }
+ V[k][k] = 1.0;
+ }
+ }
+
+ // Main iteration loop for the singular values.
+
+ int pp = p-1;
+ int iter = 0;
+ Real eps(pow(2.0,-52.0));
+ while (p > 0) {
+ int k=0;
+ int kase=0;
+
+ // Here is where a test for too many iterations would go.
+
+ // This section of the program inspects for
+ // negligible elements in the s and e arrays. On
+ // completion the variables kase and k are set as follows.
+
+ // kase = 1 if s(p) and e[k-1] are negligible and k<p
+ // kase = 2 if s(k) is negligible and k<p
+ // kase = 3 if e[k-1] is negligible, k<p, and
+ // s(k), ..., s(p) are not negligible (qr step).
+ // kase = 4 if e(p-1) is negligible (convergence).
+
+ for (k = p-2; k >= -1; k--) {
+ if (k == -1) {
+ break;
+ }
+ if (abs(e[k]) <= eps*(abs(s[k]) + abs(s[k+1]))) {
+ e[k] = 0.0;
+ break;
+ }
+ }
+ if (k == p-2) {
+ kase = 4;
+ } else {
+ int ks;
+ for (ks = p-1; ks >= k; ks--) {
+ if (ks == k) {
+ break;
+ }
+ Real t( (ks != p ? abs(e[ks]) : 0.) +
+ (ks != k+1 ? abs(e[ks-1]) : 0.));
+ if (abs(s[ks]) <= eps*t) {
+ s[ks] = 0.0;
+ break;
+ }
+ }
+ if (ks == k) {
+ kase = 3;
+ } else if (ks == p-1) {
+ kase = 1;
+ } else {
+ kase = 2;
+ k = ks;
+ }
+ }
+ k++;
+
+ // Perform the task indicated by kase.
+
+ switch (kase) {
+
+ // Deflate negligible s(p).
+
+ case 1: {
+ Real f(e[p-2]);
+ e[p-2] = 0.0;
+ for (j = p-2; j >= k; j--) {
+ Real t( hypot(s[j],f));
+ Real cs(s[j]/t);
+ Real sn(f/t);
+ s[j] = t;
+ if (j != k) {
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+ if (wantv) {
+ for (i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][p-1];
+ V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
+ V[i][j] = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Split at negligible s(k).
+
+ case 2: {
+ Real f(e[k-1]);
+ e[k-1] = 0.0;
+ for (j = k; j < p; j++) {
+ Real t(hypot(s[j],f));
+ Real cs( s[j]/t);
+ Real sn(f/t);
+ s[j] = t;
+ f = -sn*e[j];
+ e[j] = cs*e[j];
+ if (wantu) {
+ for (i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][k-1];
+ U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
+ U[i][j] = t;
+ }
+ }
+ }
+ }
+ break;
+
+ // Perform one qr step.
+
+ case 3: {
+
+ // Calculate the shift.
+
+ Real scale = std::max(std::max(std::max(std::max(
+ abs(s[p-1]),abs(s[p-2])),abs(e[p-2])),
+ abs(s[k])),abs(e[k]));
+ Real sp = s[p-1]/scale;
+ Real spm1 = s[p-2]/scale;
+ Real epm1 = e[p-2]/scale;
+ Real sk = s[k]/scale;
+ Real ek = e[k]/scale;
+ Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
+ Real c = (sp*epm1)*(sp*epm1);
+ Real shift = 0.0;
+ if ((b != 0.0) || (c != 0.0)) {
+ shift = sqrt(b*b + c);
+ if (b < 0.0) {
+ shift = -shift;
+ }
+ shift = c/(b + shift);
+ }
+ Real f = (sk + sp)*(sk - sp) + shift;
+ Real g = sk*ek;
+
+ // Chase zeros.
+
+ for (j = k; j < p-1; j++) {
+ Real t = hypot(f,g);
+ Real cs = f/t;
+ Real sn = g/t;
+ if (j != k) {
+ e[j-1] = t;
+ }
+ f = cs*s[j] + sn*e[j];
+ e[j] = cs*e[j] - sn*s[j];
+ g = sn*s[j+1];
+ s[j+1] = cs*s[j+1];
+ if (wantv) {
+ for (i = 0; i < n; i++) {
+ t = cs*V[i][j] + sn*V[i][j+1];
+ V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
+ V[i][j] = t;
+ }
+ }
+ t = hypot(f,g);
+ cs = f/t;
+ sn = g/t;
+ s[j] = t;
+ f = cs*e[j] + sn*s[j+1];
+ s[j+1] = -sn*e[j] + cs*s[j+1];
+ g = sn*e[j+1];
+ e[j+1] = cs*e[j+1];
+ if (wantu && (j < m-1)) {
+ for (i = 0; i < m; i++) {
+ t = cs*U[i][j] + sn*U[i][j+1];
+ U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
+ U[i][j] = t;
+ }
+ }
+ }
+ e[p-2] = f;
+ iter = iter + 1;
+ }
+ break;
+
+ // Convergence.
+
+ case 4: {
+
+ // Make the singular values positive.
+
+ if (s[k] <= 0.0) {
+ s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
+ if (wantv) {
+ for (i = 0; i <= pp; i++) {
+ V[i][k] = -V[i][k];
+ }
+ }
+ }
+
+ // Order the singular values.
+
+ while (k < pp) {
+ if (s[k] >= s[k+1]) {
+ break;
+ }
+ Real t = s[k];
+ s[k] = s[k+1];
+ s[k+1] = t;
+ if (wantv && (k < n-1)) {
+ for (i = 0; i < n; i++) {
+ t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
+ }
+ }
+ if (wantu && (k < m-1)) {
+ for (i = 0; i < m; i++) {
+ t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
+ }
+ }
+ k++;
+ }
+ iter = 0;
+ p--;
+ }
+ break;
+ }
+ }
+ }
+
+
+ void getU (Array2D<Real> &A)
+ {
+ int minm = std::min(m+1,n);
+
+ A = Array2D<Real>(m, minm);
+
+ for (int i=0; i<m; i++)
+ for (int j=0; j<minm; j++)
+ A[i][j] = U[i][j];
+
+ }
+
+ /* Return the right singular vectors */
+
+ void getV (Array2D<Real> &A)
+ {
+ A = V;
+ }
+
+ /** Return the one-dimensional array of singular values */
+
+ void getSingularValues (Array1D<Real> &x)
+ {
+ x = s;
+ }
+
+ /** Return the diagonal matrix of singular values
+ @return S
+ */
+
+ void getS (Array2D<Real> &A) {
+ A = Array2D<Real>(n,n);
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ A[i][j] = 0.0;
+ }
+ A[i][i] = s[i];
+ }
+ }
+
+ /** Two norm (max(S)) */
+
+ Real norm2 () {
+ return s[0];
+ }
+
+ /** Two norm of condition number (max(S)/min(S)) */
+
+ Real cond () {
+ return s[0]/s[std::min(m,n)-1];
+ }
+
+ /** Effective numerical matrix rank
+ @return Number of nonnegligible singular values.
+ */
+
+ int rank ()
+ {
+ Real eps = pow(2.0,-52.0);
+ Real tol = std::max(m,n)*s[0]*eps;
+ int r = 0;
+ for (int i = 0; i < s.dim(); i++) {
+ if (s[i] > tol) {
+ r++;
+ }
+ }
+ return r;
+ }
+};
+
+}
+#endif
+// JAMA_SVD_H
diff --git a/lib/include/tnt/tnt.h b/lib/include/tnt/tnt.h
new file mode 100644
index 0000000..92463e0
--- /dev/null
+++ b/lib/include/tnt/tnt.h
@@ -0,0 +1,64 @@
+/*
+*
+* Template Numerical Toolkit (TNT): Linear Algebra Module
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_H
+#define TNT_H
+
+
+
+//---------------------------------------------------------------------
+// Define this macro if you want TNT to track some of the out-of-bounds
+// indexing. This can encur a small run-time overhead, but is recommended
+// while developing code. It can be turned off for production runs.
+//
+// #define TNT_BOUNDS_CHECK
+//---------------------------------------------------------------------
+//
+
+//#define TNT_BOUNDS_CHECK
+
+
+
+#include "tnt_version.h"
+#include "tnt_math_utils.h"
+#include "tnt_array1d.h"
+#include "tnt_array2d.h"
+#include "tnt_array3d.h"
+#include "tnt_array1d_utils.h"
+#include "tnt_array2d_utils.h"
+#include "tnt_array3d_utils.h"
+
+#include "tnt_fortran_array1d.h"
+#include "tnt_fortran_array2d.h"
+#include "tnt_fortran_array3d.h"
+#include "tnt_fortran_array1d_utils.h"
+#include "tnt_fortran_array2d_utils.h"
+#include "tnt_fortran_array3d_utils.h"
+
+#include "tnt_sparse_matrix_csr.h"
+
+#include "tnt_stopwatch.h"
+#include "tnt_subscript.h"
+#include "tnt_vec.h"
+#include "tnt_cmat.h"
+
+
+#endif
+// TNT_H
diff --git a/lib/include/tnt/tnt_array1d.h b/lib/include/tnt/tnt_array1d.h
new file mode 100644
index 0000000..858df57
--- /dev/null
+++ b/lib/include/tnt/tnt_array1d.h
@@ -0,0 +1,278 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_ARRAY1D_H
+#define TNT_ARRAY1D_H
+
+//#include <cstdlib>
+#include <iostream>
+
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+
+#include "tnt_i_refvec.h"
+
+namespace TNT
+{
+
+template <class T>
+class Array1D
+{
+
+ private:
+
+ /* ... */
+ i_refvec<T> v_;
+ int n_;
+ T* data_; /* this normally points to v_.begin(), but
+ * could also point to a portion (subvector)
+ * of v_.
+ */
+
+ void copy_(T* p, const T* q, int len) const;
+ void set_(T* begin, T* end, const T& val);
+
+
+ public:
+
+ typedef T value_type;
+
+
+ Array1D();
+ explicit Array1D(int n);
+ Array1D(int n, const T &a);
+ Array1D(int n, T *a);
+ inline Array1D(const Array1D &A);
+ inline operator T*();
+ inline operator const T*();
+ inline Array1D & operator=(const T &a);
+ inline Array1D & operator=(const Array1D &A);
+ inline Array1D & ref(const Array1D &A);
+ Array1D copy() const;
+ Array1D & inject(const Array1D & A);
+ inline T& operator[](int i);
+ inline const T& operator[](int i) const;
+ inline int dim1() const;
+ inline int dim() const;
+ ~Array1D();
+
+
+ /* ... extended interface ... */
+
+ inline int ref_count() const;
+ inline Array1D<T> subarray(int i0, int i1);
+
+};
+
+
+
+
+template <class T>
+Array1D<T>::Array1D() : v_(), n_(0), data_(0) {}
+
+template <class T>
+Array1D<T>::Array1D(const Array1D<T> &A) : v_(A.v_), n_(A.n_),
+ data_(A.data_)
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Array1D(const Array1D<T> &A) \n";
+#endif
+
+}
+
+
+template <class T>
+Array1D<T>::Array1D(int n) : v_(n), n_(n), data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Array1D(int n) \n";
+#endif
+}
+
+template <class T>
+Array1D<T>::Array1D(int n, const T &val) : v_(n), n_(n), data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Array1D(int n, const T& val) \n";
+#endif
+ set_(data_, data_+ n, val);
+
+}
+
+template <class T>
+Array1D<T>::Array1D(int n, T *a) : v_(a), n_(n) , data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Array1D(int n, T* a) \n";
+#endif
+}
+
+template <class T>
+inline Array1D<T>::operator T*()
+{
+ return &(v_[0]);
+}
+
+
+template <class T>
+inline Array1D<T>::operator const T*()
+{
+ return &(v_[0]);
+}
+
+
+
+template <class T>
+inline T& Array1D<T>::operator[](int i)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i>= 0);
+ assert(i < n_);
+#endif
+ return data_[i];
+}
+
+template <class T>
+inline const T& Array1D<T>::operator[](int i) const
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i>= 0);
+ assert(i < n_);
+#endif
+ return data_[i];
+}
+
+
+
+
+template <class T>
+Array1D<T> & Array1D<T>::operator=(const T &a)
+{
+ set_(data_, data_+n_, a);
+ return *this;
+}
+
+template <class T>
+Array1D<T> Array1D<T>::copy() const
+{
+ Array1D A( n_);
+ copy_(A.data_, data_, n_);
+
+ return A;
+}
+
+
+template <class T>
+Array1D<T> & Array1D<T>::inject(const Array1D &A)
+{
+ if (A.n_ == n_)
+ copy_(data_, A.data_, n_);
+
+ return *this;
+}
+
+
+
+
+
+template <class T>
+Array1D<T> & Array1D<T>::ref(const Array1D<T> &A)
+{
+ if (this != &A)
+ {
+ v_ = A.v_; /* operator= handles the reference counting. */
+ n_ = A.n_;
+ data_ = A.data_;
+
+ }
+ return *this;
+}
+
+template <class T>
+Array1D<T> & Array1D<T>::operator=(const Array1D<T> &A)
+{
+ return ref(A);
+}
+
+template <class T>
+inline int Array1D<T>::dim1() const { return n_; }
+
+template <class T>
+inline int Array1D<T>::dim() const { return n_; }
+
+template <class T>
+Array1D<T>::~Array1D() {}
+
+
+/* ............................ exented interface ......................*/
+
+template <class T>
+inline int Array1D<T>::ref_count() const
+{
+ return v_.ref_count();
+}
+
+template <class T>
+inline Array1D<T> Array1D<T>::subarray(int i0, int i1)
+{
+ if ((i0 > 0) && (i1 < n_) || (i0 <= i1))
+ {
+ Array1D<T> X(*this); /* create a new instance of this array. */
+ X.n_ = i1-i0+1;
+ X.data_ += i0;
+
+ return X;
+ }
+ else
+ {
+ return Array1D<T>();
+ }
+}
+
+
+/* private internal functions */
+
+
+template <class T>
+void Array1D<T>::set_(T* begin, T* end, const T& a)
+{
+ for (T* p=begin; p<end; p++)
+ *p = a;
+
+}
+
+template <class T>
+void Array1D<T>::copy_(T* p, const T* q, int len) const
+{
+ T *end = p + len;
+ while (p<end )
+ *p++ = *q++;
+
+}
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_ARRAY1D_H */
+
diff --git a/lib/include/tnt/tnt_array1d_utils.h b/lib/include/tnt/tnt_array1d_utils.h
new file mode 100644
index 0000000..683e0e2
--- /dev/null
+++ b/lib/include/tnt/tnt_array1d_utils.h
@@ -0,0 +1,230 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+#ifndef TNT_ARRAY1D_UTILS_H
+#define TNT_ARRAY1D_UTILS_H
+
+#include <cstdlib>
+#include <cassert>
+
+namespace TNT
+{
+
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Array1D<T> &A)
+{
+ int N=A.dim1();
+
+#ifdef TNT_DEBUG
+ s << "addr: " << (void *) &A[0] << "\n";
+#endif
+ s << N << "\n";
+ for (int j=0; j<N; j++)
+ {
+ s << A[j] << "\n";
+ }
+ s << "\n";
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Array1D<T> &A)
+{
+ int N;
+ s >> N;
+
+ Array1D<T> B(N);
+ for (int i=0; i<N; i++)
+ s >> B[i];
+ A = B;
+ return s;
+}
+
+
+
+template <class T>
+Array1D<T> operator+(const Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Array1D<T>();
+
+ else
+ {
+ Array1D<T> C(n);
+
+ for (int i=0; i<n; i++)
+ {
+ C[i] = A[i] + B[i];
+ }
+ return C;
+ }
+}
+
+
+
+template <class T>
+Array1D<T> operator-(const Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Array1D<T>();
+
+ else
+ {
+ Array1D<T> C(n);
+
+ for (int i=0; i<n; i++)
+ {
+ C[i] = A[i] - B[i];
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Array1D<T> operator*(const Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Array1D<T>();
+
+ else
+ {
+ Array1D<T> C(n);
+
+ for (int i=0; i<n; i++)
+ {
+ C[i] = A[i] * B[i];
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Array1D<T> operator/(const Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Array1D<T>();
+
+ else
+ {
+ Array1D<T> C(n);
+
+ for (int i=0; i<n; i++)
+ {
+ C[i] = A[i] / B[i];
+ }
+ return C;
+ }
+}
+
+
+
+
+
+
+
+
+
+template <class T>
+Array1D<T>& operator+=(Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=0; i<n; i++)
+ {
+ A[i] += B[i];
+ }
+ }
+ return A;
+}
+
+
+
+
+template <class T>
+Array1D<T>& operator-=(Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=0; i<n; i++)
+ {
+ A[i] -= B[i];
+ }
+ }
+ return A;
+}
+
+
+
+template <class T>
+Array1D<T>& operator*=(Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=0; i<n; i++)
+ {
+ A[i] *= B[i];
+ }
+ }
+ return A;
+}
+
+
+
+
+template <class T>
+Array1D<T>& operator/=(Array1D<T> &A, const Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=0; i<n; i++)
+ {
+ A[i] /= B[i];
+ }
+ }
+ return A;
+}
+
+
+
+
+
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_array2d.h b/lib/include/tnt/tnt_array2d.h
new file mode 100644
index 0000000..c791575
--- /dev/null
+++ b/lib/include/tnt/tnt_array2d.h
@@ -0,0 +1,315 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_ARRAY2D_H
+#define TNT_ARRAY2D_H
+
+#include <cstdlib>
+#include <iostream>
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+#include "tnt_array1d.h"
+
+namespace TNT
+{
+
+template <class T>
+class Array2D
+{
+
+
+ private:
+
+
+
+ Array1D<T> data_;
+ Array1D<T*> v_;
+ int m_;
+ int n_;
+
+ public:
+
+ typedef T value_type;
+ Array2D();
+ Array2D(int m, int n);
+ Array2D(int m, int n, T *a);
+ Array2D(int m, int n, const T &a);
+ inline Array2D(const Array2D &A);
+ inline operator T**();
+ inline operator const T**();
+ inline Array2D & operator=(const T &a);
+ inline Array2D & operator=(const Array2D &A);
+ inline Array2D & ref(const Array2D &A);
+ Array2D copy() const;
+ Array2D & inject(const Array2D & A);
+ inline T* operator[](int i);
+ inline const T* operator[](int i) const;
+ inline int dim1() const;
+ inline int dim2() const;
+ ~Array2D();
+
+ /* extended interface (not part of the standard) */
+
+
+ inline int ref_count();
+ inline int ref_count_data();
+ inline int ref_count_dim1();
+ Array2D subarray(int i0, int i1, int j0, int j1);
+
+};
+
+
+template <class T>
+Array2D<T>::Array2D() : data_(), v_(), m_(0), n_(0) {}
+
+template <class T>
+Array2D<T>::Array2D(const Array2D<T> &A) : data_(A.data_), v_(A.v_),
+ m_(A.m_), n_(A.n_) {}
+
+
+
+
+template <class T>
+Array2D<T>::Array2D(int m, int n) : data_(m*n), v_(m), m_(m), n_(n)
+{
+ if (m>0 && n>0)
+ {
+ T* p = &(data_[0]);
+ for (int i=0; i<m; i++)
+ {
+ v_[i] = p;
+ p += n;
+ }
+ }
+}
+
+
+
+template <class T>
+Array2D<T>::Array2D(int m, int n, const T &val) : data_(m*n), v_(m),
+ m_(m), n_(n)
+{
+ if (m>0 && n>0)
+ {
+ data_ = val;
+ T* p = &(data_[0]);
+ for (int i=0; i<m; i++)
+ {
+ v_[i] = p;
+ p += n;
+ }
+ }
+}
+
+template <class T>
+Array2D<T>::Array2D(int m, int n, T *a) : data_(m*n, a), v_(m), m_(m), n_(n)
+{
+ if (m>0 && n>0)
+ {
+ T* p = &(data_[0]);
+
+ for (int i=0; i<m; i++)
+ {
+ v_[i] = p;
+ p += n;
+ }
+ }
+}
+
+
+template <class T>
+inline T* Array2D<T>::operator[](int i)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 0);
+ assert(i < m_);
+#endif
+
+return v_[i];
+
+}
+
+
+template <class T>
+inline const T* Array2D<T>::operator[](int i) const
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 0);
+ assert(i < m_);
+#endif
+
+return v_[i];
+
+}
+
+template <class T>
+Array2D<T> & Array2D<T>::operator=(const T &a)
+{
+ /* non-optimzied, but will work with subarrays in future verions */
+
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ v_[i][j] = a;
+ return *this;
+}
+
+
+
+
+template <class T>
+Array2D<T> Array2D<T>::copy() const
+{
+ Array2D A(m_, n_);
+
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ A[i][j] = v_[i][j];
+
+
+ return A;
+}
+
+
+template <class T>
+Array2D<T> & Array2D<T>::inject(const Array2D &A)
+{
+ if (A.m_ == m_ && A.n_ == n_)
+ {
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ v_[i][j] = A[i][j];
+ }
+ return *this;
+}
+
+
+
+
+template <class T>
+Array2D<T> & Array2D<T>::ref(const Array2D<T> &A)
+{
+ if (this != &A)
+ {
+ v_ = A.v_;
+ data_ = A.data_;
+ m_ = A.m_;
+ n_ = A.n_;
+
+ }
+ return *this;
+}
+
+
+
+template <class T>
+Array2D<T> & Array2D<T>::operator=(const Array2D<T> &A)
+{
+ return ref(A);
+}
+
+template <class T>
+inline int Array2D<T>::dim1() const { return m_; }
+
+template <class T>
+inline int Array2D<T>::dim2() const { return n_; }
+
+
+template <class T>
+Array2D<T>::~Array2D() {}
+
+
+
+
+template <class T>
+inline Array2D<T>::operator T**()
+{
+ return &(v_[0]);
+}
+template <class T>
+inline Array2D<T>::operator const T**()
+{
+ return &(v_[0]);
+}
+
+/* ............... extended interface ............... */
+/**
+ Create a new view to a subarray defined by the boundaries
+ [i0][i0] and [i1][j1]. The size of the subarray is
+ (i1-i0) by (j1-j0). If either of these lengths are zero
+ or negative, the subarray view is null.
+
+*/
+template <class T>
+Array2D<T> Array2D<T>::subarray(int i0, int i1, int j0, int j1)
+{
+ Array2D<T> A;
+ int m = i1-i0+1;
+ int n = j1-j0+1;
+
+ /* if either length is zero or negative, this is an invalide
+ subarray. return a null view.
+ */
+ if (m<1 || n<1)
+ return A;
+
+ A.data_ = data_;
+ A.m_ = m;
+ A.n_ = n;
+ A.v_ = Array1D<T*>(m);
+ T* p = &(data_[0]) + i0 * n_ + j0;
+ for (int i=0; i<m; i++)
+ {
+ A.v_[i] = p + i*n_;
+
+ }
+ return A;
+}
+
+template <class T>
+inline int Array2D<T>::ref_count()
+{
+ return ref_count_data();
+}
+
+
+
+template <class T>
+inline int Array2D<T>::ref_count_data()
+{
+ return data_.ref_count();
+}
+
+template <class T>
+inline int Array2D<T>::ref_count_dim1()
+{
+ return v_.ref_count();
+}
+
+
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_ARRAY2D_H */
+
diff --git a/lib/include/tnt/tnt_array2d_utils.h b/lib/include/tnt/tnt_array2d_utils.h
new file mode 100644
index 0000000..7041ed3
--- /dev/null
+++ b/lib/include/tnt/tnt_array2d_utils.h
@@ -0,0 +1,287 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_ARRAY2D_UTILS_H
+#define TNT_ARRAY2D_UTILS_H
+
+#include <cstdlib>
+#include <cassert>
+
+namespace TNT
+{
+
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Array2D<T> &A)
+{
+ int M=A.dim1();
+ int N=A.dim2();
+
+ s << M << " " << N << "\n";
+
+ for (int i=0; i<M; i++)
+ {
+ for (int j=0; j<N; j++)
+ {
+ s << A[i][j] << " ";
+ }
+ s << "\n";
+ }
+
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Array2D<T> &A)
+{
+
+ int M, N;
+
+ s >> M >> N;
+
+ Array2D<T> B(M,N);
+
+ for (int i=0; i<M; i++)
+ for (int j=0; j<N; j++)
+ {
+ s >> B[i][j];
+ }
+
+ A = B;
+ return s;
+}
+
+
+template <class T>
+Array2D<T> operator+(const Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Array2D<T>();
+
+ else
+ {
+ Array2D<T> C(m,n);
+
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ C[i][j] = A[i][j] + B[i][j];
+ }
+ return C;
+ }
+}
+
+template <class T>
+Array2D<T> operator-(const Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Array2D<T>();
+
+ else
+ {
+ Array2D<T> C(m,n);
+
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ C[i][j] = A[i][j] - B[i][j];
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Array2D<T> operator*(const Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Array2D<T>();
+
+ else
+ {
+ Array2D<T> C(m,n);
+
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ C[i][j] = A[i][j] * B[i][j];
+ }
+ return C;
+ }
+}
+
+
+
+
+template <class T>
+Array2D<T> operator/(const Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Array2D<T>();
+
+ else
+ {
+ Array2D<T> C(m,n);
+
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ C[i][j] = A[i][j] / B[i][j];
+ }
+ return C;
+ }
+}
+
+
+
+
+
+template <class T>
+Array2D<T>& operator+=(Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ A[i][j] += B[i][j];
+ }
+ }
+ return A;
+}
+
+
+
+template <class T>
+Array2D<T>& operator-=(Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ A[i][j] -= B[i][j];
+ }
+ }
+ return A;
+}
+
+
+
+template <class T>
+Array2D<T>& operator*=(Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ A[i][j] *= B[i][j];
+ }
+ }
+ return A;
+}
+
+
+
+
+
+template <class T>
+Array2D<T>& operator/=(Array2D<T> &A, const Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=0; i<m; i++)
+ {
+ for (int j=0; j<n; j++)
+ A[i][j] /= B[i][j];
+ }
+ }
+ return A;
+}
+
+/**
+ Matrix Multiply: compute C = A*B, where C[i][j]
+ is the dot-product of row i of A and column j of B.
+
+
+ @param A an (m x n) array
+ @param B an (n x k) array
+ @return the (m x k) array A*B, or a null array (0x0)
+ if the matrices are non-conformant (i.e. the number
+ of columns of A are different than the number of rows of B.)
+
+
+*/
+template <class T>
+Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B)
+{
+ if (A.dim2() != B.dim1())
+ return Array2D<T>();
+
+ int M = A.dim1();
+ int N = A.dim2();
+ int K = B.dim2();
+
+ Array2D<T> C(M,K);
+
+ for (int i=0; i<M; i++)
+ for (int j=0; j<K; j++)
+ {
+ T sum = 0;
+
+ for (int k=0; k<N; k++)
+ sum += A[i][k] * B [k][j];
+
+ C[i][j] = sum;
+ }
+
+ return C;
+
+}
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_array3d.h b/lib/include/tnt/tnt_array3d.h
new file mode 100644
index 0000000..c210d2e
--- /dev/null
+++ b/lib/include/tnt/tnt_array3d.h
@@ -0,0 +1,296 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_ARRAY3D_H
+#define TNT_ARRAY3D_H
+
+#include <cstdlib>
+#include <iostream>
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+#include "tnt_array1d.h"
+#include "tnt_array2d.h"
+
+namespace TNT
+{
+
+template <class T>
+class Array3D
+{
+
+
+ private:
+ Array1D<T> data_;
+ Array2D<T*> v_;
+ int m_;
+ int n_;
+ int g_;
+
+
+ public:
+
+ typedef T value_type;
+
+ Array3D();
+ Array3D(int m, int n, int g);
+ Array3D(int m, int n, int g, T val);
+ Array3D(int m, int n, int g, T *a);
+
+ inline operator T***();
+ inline operator const T***();
+ inline Array3D(const Array3D &A);
+ inline Array3D & operator=(const T &a);
+ inline Array3D & operator=(const Array3D &A);
+ inline Array3D & ref(const Array3D &A);
+ Array3D copy() const;
+ Array3D & inject(const Array3D & A);
+
+ inline T** operator[](int i);
+ inline const T* const * operator[](int i) const;
+ inline int dim1() const;
+ inline int dim2() const;
+ inline int dim3() const;
+ ~Array3D();
+
+ /* extended interface */
+
+ inline int ref_count(){ return data_.ref_count(); }
+ Array3D subarray(int i0, int i1, int j0, int j1,
+ int k0, int k1);
+};
+
+template <class T>
+Array3D<T>::Array3D() : data_(), v_(), m_(0), n_(0) {}
+
+template <class T>
+Array3D<T>::Array3D(const Array3D<T> &A) : data_(A.data_),
+ v_(A.v_), m_(A.m_), n_(A.n_), g_(A.g_)
+{
+}
+
+
+
+template <class T>
+Array3D<T>::Array3D(int m, int n, int g) : data_(m*n*g), v_(m,n),
+ m_(m), n_(n), g_(g)
+{
+
+ if (m>0 && n>0 && g>0)
+ {
+ T* p = & (data_[0]);
+ int ng = n_*g_;
+
+ for (int i=0; i<m_; i++)
+ {
+ T* ping = p+ i*ng;
+ for (int j=0; j<n; j++)
+ v_[i][j] = ping + j*g_;
+ }
+ }
+}
+
+
+
+template <class T>
+Array3D<T>::Array3D(int m, int n, int g, T val) : data_(m*n*g, val),
+ v_(m,n), m_(m), n_(n), g_(g)
+{
+ if (m>0 && n>0 && g>0)
+ {
+
+ T* p = & (data_[0]);
+ int ng = n_*g_;
+
+ for (int i=0; i<m_; i++)
+ {
+ T* ping = p+ i*ng;
+ for (int j=0; j<n; j++)
+ v_[i][j] = ping + j*g_;
+ }
+ }
+}
+
+
+
+template <class T>
+Array3D<T>::Array3D(int m, int n, int g, T* a) :
+ data_(m*n*g, a), v_(m,n), m_(m), n_(n), g_(g)
+{
+
+ if (m>0 && n>0 && g>0)
+ {
+ T* p = & (data_[0]);
+ int ng = n_*g_;
+
+ for (int i=0; i<m_; i++)
+ {
+ T* ping = p+ i*ng;
+ for (int j=0; j<n; j++)
+ v_[i][j] = ping + j*g_;
+ }
+ }
+}
+
+
+
+template <class T>
+inline T** Array3D<T>::operator[](int i)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 0);
+ assert(i < m_);
+#endif
+
+return v_[i];
+
+}
+
+template <class T>
+inline const T* const * Array3D<T>::operator[](int i) const
+{ return v_[i]; }
+
+template <class T>
+Array3D<T> & Array3D<T>::operator=(const T &a)
+{
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ for (int k=0; k<g_; k++)
+ v_[i][j][k] = a;
+
+ return *this;
+}
+
+template <class T>
+Array3D<T> Array3D<T>::copy() const
+{
+ Array3D A(m_, n_, g_);
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ for (int k=0; k<g_; k++)
+ A.v_[i][j][k] = v_[i][j][k];
+
+ return A;
+}
+
+
+template <class T>
+Array3D<T> & Array3D<T>::inject(const Array3D &A)
+{
+ if (A.m_ == m_ && A.n_ == n_ && A.g_ == g_)
+
+ for (int i=0; i<m_; i++)
+ for (int j=0; j<n_; j++)
+ for (int k=0; k<g_; k++)
+ v_[i][j][k] = A.v_[i][j][k];
+
+ return *this;
+}
+
+
+
+template <class T>
+Array3D<T> & Array3D<T>::ref(const Array3D<T> &A)
+{
+ if (this != &A)
+ {
+ m_ = A.m_;
+ n_ = A.n_;
+ g_ = A.g_;
+ v_ = A.v_;
+ data_ = A.data_;
+ }
+ return *this;
+}
+
+template <class T>
+Array3D<T> & Array3D<T>::operator=(const Array3D<T> &A)
+{
+ return ref(A);
+}
+
+
+template <class T>
+inline int Array3D<T>::dim1() const { return m_; }
+
+template <class T>
+inline int Array3D<T>::dim2() const { return n_; }
+
+template <class T>
+inline int Array3D<T>::dim3() const { return g_; }
+
+
+
+template <class T>
+Array3D<T>::~Array3D() {}
+
+template <class T>
+inline Array3D<T>::operator T***()
+{
+ return v_;
+}
+
+
+template <class T>
+inline Array3D<T>::operator const T***()
+{
+ return v_;
+}
+
+/* extended interface */
+template <class T>
+Array3D<T> Array3D<T>::subarray(int i0, int i1, int j0,
+ int j1, int k0, int k1)
+{
+
+ /* check that ranges are valid. */
+ if (!( 0 <= i0 && i0 <= i1 && i1 < m_ &&
+ 0 <= j0 && j0 <= j1 && j1 < n_ &&
+ 0 <= k0 && k0 <= k1 && k1 < g_))
+ return Array3D<T>(); /* null array */
+
+
+ Array3D<T> A;
+ A.data_ = data_;
+ A.m_ = i1-i0+1;
+ A.n_ = j1-j0+1;
+ A.g_ = k1-k0+1;
+ A.v_ = Array2D<T*>(A.m_,A.n_);
+ T* p = &(data_[0]) + i0*n_*g_ + j0*g_ + k0;
+
+ for (int i=0; i<A.m_; i++)
+ {
+ T* ping = p + i*n_*g_;
+ for (int j=0; j<A.n_; j++)
+ A.v_[i][j] = ping + j*g_ ;
+ }
+
+ return A;
+}
+
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_ARRAY3D_H */
+
diff --git a/lib/include/tnt/tnt_array3d_utils.h b/lib/include/tnt/tnt_array3d_utils.h
new file mode 100644
index 0000000..5acdc1d
--- /dev/null
+++ b/lib/include/tnt/tnt_array3d_utils.h
@@ -0,0 +1,236 @@
+
+
+#ifndef TNT_ARRAY3D_UTILS_H
+#define TNT_ARRAY3D_UTILS_H
+
+#include <cstdlib>
+#include <cassert>
+
+namespace TNT
+{
+
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Array3D<T> &A)
+{
+ int M=A.dim1();
+ int N=A.dim2();
+ int K=A.dim3();
+
+ s << M << " " << N << " " << K << "\n";
+
+ for (int i=0; i<M; i++)
+ {
+ for (int j=0; j<N; j++)
+ {
+ for (int k=0; k<K; k++)
+ s << A[i][j][k] << " ";
+ s << "\n";
+ }
+ s << "\n";
+ }
+
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Array3D<T> &A)
+{
+
+ int M, N, K;
+
+ s >> M >> N >> K;
+
+ Array3D<T> B(M,N,K);
+
+ for (int i=0; i<M; i++)
+ for (int j=0; j<N; j++)
+ for (int k=0; k<K; k++)
+ s >> B[i][j][k];
+
+ A = B;
+ return s;
+}
+
+
+
+template <class T>
+Array3D<T> operator+(const Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Array3D<T>();
+
+ else
+ {
+ Array3D<T> C(m,n,p);
+
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ C[i][j][k] = A[i][j][k] + B[i][j][k];
+
+ return C;
+ }
+}
+
+
+template <class T>
+Array3D<T> operator-(const Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Array3D<T>();
+
+ else
+ {
+ Array3D<T> C(m,n,p);
+
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ C[i][j][k] = A[i][j][k] - B[i][j][k];
+
+ return C;
+ }
+}
+
+
+
+
+template <class T>
+Array3D<T> operator*(const Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Array3D<T>();
+
+ else
+ {
+ Array3D<T> C(m,n,p);
+
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ C[i][j][k] = A[i][j][k] * B[i][j][k];
+
+ return C;
+ }
+}
+
+
+template <class T>
+Array3D<T> operator/(const Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Array3D<T>();
+
+ else
+ {
+ Array3D<T> C(m,n,p);
+
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ C[i][j][k] = A[i][j][k] / B[i][j][k];
+
+ return C;
+ }
+}
+
+
+
+template <class T>
+Array3D<T>& operator+=(Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ A[i][j][k] += B[i][j][k];
+ }
+
+ return A;
+}
+
+template <class T>
+Array3D<T>& operator-=(Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ A[i][j][k] -= B[i][j][k];
+ }
+
+ return A;
+}
+
+template <class T>
+Array3D<T>& operator*=(Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ A[i][j][k] *= B[i][j][k];
+ }
+
+ return A;
+}
+
+
+template <class T>
+Array3D<T>& operator/=(Array3D<T> &A, const Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=0; i<m; i++)
+ for (int j=0; j<n; j++)
+ for (int k=0; k<p; k++)
+ A[i][j][k] /= B[i][j][k];
+ }
+
+ return A;
+}
+
+
+
+
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_cmat.h b/lib/include/tnt/tnt_cmat.h
new file mode 100644
index 0000000..5ff4c48
--- /dev/null
+++ b/lib/include/tnt/tnt_cmat.h
@@ -0,0 +1,580 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+// C compatible matrix: row-oriented, 0-based [i][j] and 1-based (i,j) indexing
+//
+
+#ifndef TNT_CMAT_H
+#define TNT_CMAT_H
+
+#include "tnt_subscript.h"
+#include "tnt_vec.h"
+#include <cstdlib>
+#include <cassert>
+#include <iostream>
+#include <sstream>
+
+namespace TNT
+{
+
+
+template <class T>
+class Matrix
+{
+
+
+ public:
+
+ typedef Subscript size_type;
+ typedef T value_type;
+ typedef T element_type;
+ typedef T* pointer;
+ typedef T* iterator;
+ typedef T& reference;
+ typedef const T* const_iterator;
+ typedef const T& const_reference;
+
+ Subscript lbound() const { return 1;}
+
+ protected:
+ Subscript m_;
+ Subscript n_;
+ Subscript mn_; // total size
+ T* v_;
+ T** row_;
+ T* vm1_ ; // these point to the same data, but are 1-based
+ T** rowm1_;
+
+ // internal helper function to create the array
+ // of row pointers
+
+ void initialize(Subscript M, Subscript N)
+ {
+ mn_ = M*N;
+ m_ = M;
+ n_ = N;
+
+ v_ = new T[mn_];
+ row_ = new T*[M];
+ rowm1_ = new T*[M];
+
+ assert(v_ != NULL);
+ assert(row_ != NULL);
+ assert(rowm1_ != NULL);
+
+ T* p = v_;
+ vm1_ = v_ - 1;
+ for (Subscript i=0; i<M; i++)
+ {
+ row_[i] = p;
+ rowm1_[i] = p-1;
+ p += N ;
+
+ }
+
+ rowm1_ -- ; // compensate for 1-based offset
+ }
+
+ void copy(const T* v)
+ {
+ Subscript N = m_ * n_;
+ Subscript i;
+
+#ifdef TNT_UNROLL_LOOPS
+ Subscript Nmod4 = N & 3;
+ Subscript N4 = N - Nmod4;
+
+ for (i=0; i<N4; i+=4)
+ {
+ v_[i] = v[i];
+ v_[i+1] = v[i+1];
+ v_[i+2] = v[i+2];
+ v_[i+3] = v[i+3];
+ }
+
+ for (i=N4; i< N; i++)
+ v_[i] = v[i];
+#else
+
+ for (i=0; i< N; i++)
+ v_[i] = v[i];
+#endif
+ }
+
+ void set(const T& val)
+ {
+ Subscript N = m_ * n_;
+ Subscript i;
+
+#ifdef TNT_UNROLL_LOOPS
+ Subscript Nmod4 = N & 3;
+ Subscript N4 = N - Nmod4;
+
+ for (i=0; i<N4; i+=4)
+ {
+ v_[i] = val;
+ v_[i+1] = val;
+ v_[i+2] = val;
+ v_[i+3] = val;
+ }
+
+ for (i=N4; i< N; i++)
+ v_[i] = val;
+#else
+
+ for (i=0; i< N; i++)
+ v_[i] = val;
+
+#endif
+ }
+
+
+
+ void destroy()
+ {
+ /* do nothing, if no memory has been previously allocated */
+ if (v_ == NULL) return ;
+
+ /* if we are here, then matrix was previously allocated */
+ if (v_ != NULL) delete [] (v_);
+ if (row_ != NULL) delete [] (row_);
+
+ /* return rowm1_ back to original value */
+ rowm1_ ++;
+ if (rowm1_ != NULL ) delete [] (rowm1_);
+ }
+
+
+ public:
+
+ operator T**(){ return row_; }
+ operator T**() const { return row_; }
+
+
+ Subscript size() const { return mn_; }
+
+ // constructors
+
+ Matrix() : m_(0), n_(0), mn_(0), v_(0), row_(0), vm1_(0), rowm1_(0) {};
+
+ Matrix(const Matrix<T> &A)
+ {
+ initialize(A.m_, A.n_);
+ copy(A.v_);
+ }
+
+ Matrix(Subscript M, Subscript N, const T& value = T())
+ {
+ initialize(M,N);
+ set(value);
+ }
+
+ Matrix(Subscript M, Subscript N, const T* v)
+ {
+ initialize(M,N);
+ copy(v);
+ }
+
+ Matrix(Subscript M, Subscript N, const char *s)
+ {
+ initialize(M,N);
+ //std::istrstream ins(s);
+ std::istringstream ins(s);
+
+ Subscript i, j;
+
+ for (i=0; i<M; i++)
+ for (j=0; j<N; j++)
+ ins >> row_[i][j];
+ }
+
+ // destructor
+ //
+ ~Matrix()
+ {
+ destroy();
+ }
+
+
+ // reallocating
+ //
+ Matrix<T>& newsize(Subscript M, Subscript N)
+ {
+ if (num_rows() == M && num_cols() == N)
+ return *this;
+
+ destroy();
+ initialize(M,N);
+
+ return *this;
+ }
+
+
+
+
+ // assignments
+ //
+ Matrix<T>& operator=(const Matrix<T> &A)
+ {
+ if (v_ == A.v_)
+ return *this;
+
+ if (m_ == A.m_ && n_ == A.n_) // no need to re-alloc
+ copy(A.v_);
+
+ else
+ {
+ destroy();
+ initialize(A.m_, A.n_);
+ copy(A.v_);
+ }
+
+ return *this;
+ }
+
+ Matrix<T>& operator=(const T& scalar)
+ {
+ set(scalar);
+ return *this;
+ }
+
+
+ Subscript dim(Subscript d) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert( d >= 1);
+ assert( d <= 2);
+#endif
+ return (d==1) ? m_ : ((d==2) ? n_ : 0);
+ }
+
+ Subscript num_rows() const { return m_; }
+ Subscript num_cols() const { return n_; }
+
+
+
+
+ inline T* operator[](Subscript i)
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(0<=i);
+ assert(i < m_) ;
+#endif
+ return row_[i];
+ }
+
+ inline const T* operator[](Subscript i) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(0<=i);
+ assert(i < m_) ;
+#endif
+ return row_[i];
+ }
+
+ inline reference operator()(Subscript i)
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= mn_) ;
+#endif
+ return vm1_[i];
+ }
+
+ inline const_reference operator()(Subscript i) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= mn_) ;
+#endif
+ return vm1_[i];
+ }
+
+
+
+ inline reference operator()(Subscript i, Subscript j)
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= m_) ;
+ assert(1<=j);
+ assert(j <= n_);
+#endif
+ return rowm1_[i][j];
+ }
+
+
+
+ inline const_reference operator() (Subscript i, Subscript j) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= m_) ;
+ assert(1<=j);
+ assert(j <= n_);
+#endif
+ return rowm1_[i][j];
+ }
+
+
+
+
+};
+
+
+/* *************************** I/O ********************************/
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Matrix<T> &A)
+{
+ Subscript M=A.num_rows();
+ Subscript N=A.num_cols();
+
+ s << M << " " << N << "\n";
+
+ for (Subscript i=0; i<M; i++)
+ {
+ for (Subscript j=0; j<N; j++)
+ {
+ s << A[i][j] << " ";
+ }
+ s << "\n";
+ }
+
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Matrix<T> &A)
+{
+
+ Subscript M, N;
+
+ s >> M >> N;
+
+ if ( !(M == A.num_rows() && N == A.num_cols() ))
+ {
+ A.newsize(M,N);
+ }
+
+
+ for (Subscript i=0; i<M; i++)
+ for (Subscript j=0; j<N; j++)
+ {
+ s >> A[i][j];
+ }
+
+
+ return s;
+}
+
+// *******************[ basic matrix algorithms ]***************************
+
+
+template <class T>
+Matrix<T> operator+(const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+
+ assert(M==B.num_rows());
+ assert(N==B.num_cols());
+
+ Matrix<T> tmp(M,N);
+ Subscript i,j;
+
+ for (i=0; i<M; i++)
+ for (j=0; j<N; j++)
+ tmp[i][j] = A[i][j] + B[i][j];
+
+ return tmp;
+}
+
+template <class T>
+Matrix<T> operator-(const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+
+ assert(M==B.num_rows());
+ assert(N==B.num_cols());
+
+ Matrix<T> tmp(M,N);
+ Subscript i,j;
+
+ for (i=0; i<M; i++)
+ for (j=0; j<N; j++)
+ tmp[i][j] = A[i][j] - B[i][j];
+
+ return tmp;
+}
+
+template <class T>
+Matrix<T> mult_element(const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+
+ assert(M==B.num_rows());
+ assert(N==B.num_cols());
+
+ Matrix<T> tmp(M,N);
+ Subscript i,j;
+
+ for (i=0; i<M; i++)
+ for (j=0; j<N; j++)
+ tmp[i][j] = A[i][j] * B[i][j];
+
+ return tmp;
+}
+
+
+template <class T>
+Matrix<T> transpose(const Matrix<T> &A)
+{
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+
+ Matrix<T> S(N,M);
+ Subscript i, j;
+
+ for (i=0; i<M; i++)
+ for (j=0; j<N; j++)
+ S[j][i] = A[i][j];
+
+ return S;
+}
+
+
+
+template <class T>
+inline Matrix<T> matmult(const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+
+#ifdef TNT_BOUNDS_CHECK
+ assert(A.num_cols() == B.num_rows());
+#endif
+
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+ Subscript K = B.num_cols();
+
+ Matrix<T> tmp(M,K);
+ T sum;
+
+ for (Subscript i=0; i<M; i++)
+ for (Subscript k=0; k<K; k++)
+ {
+ sum = 0;
+ for (Subscript j=0; j<N; j++)
+ sum = sum + A[i][j] * B[j][k];
+
+ tmp[i][k] = sum;
+ }
+
+ return tmp;
+}
+
+template <class T>
+inline Matrix<T> operator*(const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+ return matmult(A,B);
+}
+
+template <class T>
+inline int matmult(Matrix<T>& C, const Matrix<T> &A,
+ const Matrix<T> &B)
+{
+
+ assert(A.num_cols() == B.num_rows());
+
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+ Subscript K = B.num_cols();
+
+ C.newsize(M,K);
+
+ T sum;
+
+ const T* row_i;
+ const T* col_k;
+
+ for (Subscript i=0; i<M; i++)
+ for (Subscript k=0; k<K; k++)
+ {
+ row_i = &(A[i][0]);
+ col_k = &(B[0][k]);
+ sum = 0;
+ for (Subscript j=0; j<N; j++)
+ {
+ sum += *row_i * *col_k;
+ row_i++;
+ col_k += K;
+ }
+ C[i][k] = sum;
+ }
+
+ return 0;
+}
+
+
+template <class T>
+Vector<T> matmult(const Matrix<T> &A, const Vector<T> &x)
+{
+
+#ifdef TNT_BOUNDS_CHECK
+ assert(A.num_cols() == x.dim());
+#endif
+
+ Subscript M = A.num_rows();
+ Subscript N = A.num_cols();
+
+ Vector<T> tmp(M);
+ T sum;
+
+ for (Subscript i=0; i<M; i++)
+ {
+ sum = 0;
+ const T* rowi = A[i];
+ for (Subscript j=0; j<N; j++)
+ sum = sum + rowi[j] * x[j];
+
+ tmp[i] = sum;
+ }
+
+ return tmp;
+}
+
+template <class T>
+inline Vector<T> operator*(const Matrix<T> &A, const Vector<T> &x)
+{
+ return matmult(A,x);
+}
+
+} // namespace TNT
+
+#endif
+// CMAT_H
diff --git a/lib/include/tnt/tnt_fortran_array1d.h b/lib/include/tnt/tnt_fortran_array1d.h
new file mode 100644
index 0000000..ad3bba0
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array1d.h
@@ -0,0 +1,267 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_FORTRAN_ARRAY1D_H
+#define TNT_FORTRAN_ARRAY1D_H
+
+#include <cstdlib>
+#include <iostream>
+
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+
+#include "tnt_i_refvec.h"
+
+namespace TNT
+{
+
+template <class T>
+class Fortran_Array1D
+{
+
+ private:
+
+ i_refvec<T> v_;
+ int n_;
+ T* data_; /* this normally points to v_.begin(), but
+ * could also point to a portion (subvector)
+ * of v_.
+ */
+
+ void initialize_(int n);
+ void copy_(T* p, const T* q, int len) const;
+ void set_(T* begin, T* end, const T& val);
+
+
+ public:
+
+ typedef T value_type;
+
+
+ Fortran_Array1D();
+ explicit Fortran_Array1D(int n);
+ Fortran_Array1D(int n, const T &a);
+ Fortran_Array1D(int n, T *a);
+ inline Fortran_Array1D(const Fortran_Array1D &A);
+ inline Fortran_Array1D & operator=(const T &a);
+ inline Fortran_Array1D & operator=(const Fortran_Array1D &A);
+ inline Fortran_Array1D & ref(const Fortran_Array1D &A);
+ Fortran_Array1D copy() const;
+ Fortran_Array1D & inject(const Fortran_Array1D & A);
+ inline T& operator()(int i);
+ inline const T& operator()(int i) const;
+ inline int dim1() const;
+ inline int dim() const;
+ ~Fortran_Array1D();
+
+
+ /* ... extended interface ... */
+
+ inline int ref_count() const;
+ inline Fortran_Array1D<T> subarray(int i0, int i1);
+
+};
+
+
+
+
+template <class T>
+Fortran_Array1D<T>::Fortran_Array1D() : v_(), n_(0), data_(0) {}
+
+template <class T>
+Fortran_Array1D<T>::Fortran_Array1D(const Fortran_Array1D<T> &A) : v_(A.v_), n_(A.n_),
+ data_(A.data_)
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Fortran_Array1D(const Fortran_Array1D<T> &A) \n";
+#endif
+
+}
+
+
+template <class T>
+Fortran_Array1D<T>::Fortran_Array1D(int n) : v_(n), n_(n), data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Fortran_Array1D(int n) \n";
+#endif
+}
+
+template <class T>
+Fortran_Array1D<T>::Fortran_Array1D(int n, const T &val) : v_(n), n_(n), data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Fortran_Array1D(int n, const T& val) \n";
+#endif
+ set_(data_, data_+ n, val);
+
+}
+
+template <class T>
+Fortran_Array1D<T>::Fortran_Array1D(int n, T *a) : v_(a), n_(n) , data_(v_.begin())
+{
+#ifdef TNT_DEBUG
+ std::cout << "Created Fortran_Array1D(int n, T* a) \n";
+#endif
+}
+
+template <class T>
+inline T& Fortran_Array1D<T>::operator()(int i)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i>= 1);
+ assert(i <= n_);
+#endif
+ return data_[i-1];
+}
+
+template <class T>
+inline const T& Fortran_Array1D<T>::operator()(int i) const
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i>= 1);
+ assert(i <= n_);
+#endif
+ return data_[i-1];
+}
+
+
+
+
+template <class T>
+Fortran_Array1D<T> & Fortran_Array1D<T>::operator=(const T &a)
+{
+ set_(data_, data_+n_, a);
+ return *this;
+}
+
+template <class T>
+Fortran_Array1D<T> Fortran_Array1D<T>::copy() const
+{
+ Fortran_Array1D A( n_);
+ copy_(A.data_, data_, n_);
+
+ return A;
+}
+
+
+template <class T>
+Fortran_Array1D<T> & Fortran_Array1D<T>::inject(const Fortran_Array1D &A)
+{
+ if (A.n_ == n_)
+ copy_(data_, A.data_, n_);
+
+ return *this;
+}
+
+
+
+
+
+template <class T>
+Fortran_Array1D<T> & Fortran_Array1D<T>::ref(const Fortran_Array1D<T> &A)
+{
+ if (this != &A)
+ {
+ v_ = A.v_; /* operator= handles the reference counting. */
+ n_ = A.n_;
+ data_ = A.data_;
+
+ }
+ return *this;
+}
+
+template <class T>
+Fortran_Array1D<T> & Fortran_Array1D<T>::operator=(const Fortran_Array1D<T> &A)
+{
+ return ref(A);
+}
+
+template <class T>
+inline int Fortran_Array1D<T>::dim1() const { return n_; }
+
+template <class T>
+inline int Fortran_Array1D<T>::dim() const { return n_; }
+
+template <class T>
+Fortran_Array1D<T>::~Fortran_Array1D() {}
+
+
+/* ............................ exented interface ......................*/
+
+template <class T>
+inline int Fortran_Array1D<T>::ref_count() const
+{
+ return v_.ref_count();
+}
+
+template <class T>
+inline Fortran_Array1D<T> Fortran_Array1D<T>::subarray(int i0, int i1)
+{
+#ifdef TNT_DEBUG
+ std::cout << "entered subarray. \n";
+#endif
+ if ((i0 > 0) && (i1 < n_) || (i0 <= i1))
+ {
+ Fortran_Array1D<T> X(*this); /* create a new instance of this array. */
+ X.n_ = i1-i0+1;
+ X.data_ += i0;
+
+ return X;
+ }
+ else
+ {
+#ifdef TNT_DEBUG
+ std::cout << "subarray: null return.\n";
+#endif
+ return Fortran_Array1D<T>();
+ }
+}
+
+
+/* private internal functions */
+
+
+template <class T>
+void Fortran_Array1D<T>::set_(T* begin, T* end, const T& a)
+{
+ for (T* p=begin; p<end; p++)
+ *p = a;
+
+}
+
+template <class T>
+void Fortran_Array1D<T>::copy_(T* p, const T* q, int len) const
+{
+ T *end = p + len;
+ while (p<end )
+ *p++ = *q++;
+
+}
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_FORTRAN_ARRAY1D_H */
+
diff --git a/lib/include/tnt/tnt_fortran_array1d_utils.h b/lib/include/tnt/tnt_fortran_array1d_utils.h
new file mode 100644
index 0000000..b037b17
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array1d_utils.h
@@ -0,0 +1,242 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+#ifndef TNT_FORTRAN_ARRAY1D_UTILS_H
+#define TNT_FORTRAN_ARRAY1D_UTILS_H
+
+#include <iostream>
+
+namespace TNT
+{
+
+
+/**
+ Write an array to a character outstream. Output format is one that can
+ be read back in via the in-stream operator: one integer
+ denoting the array dimension (n), followed by n elements,
+ one per line.
+
+*/
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Fortran_Array1D<T> &A)
+{
+ int N=A.dim1();
+
+ s << N << "\n";
+ for (int j=1; j<=N; j++)
+ {
+ s << A(j) << "\n";
+ }
+ s << "\n";
+
+ return s;
+}
+
+/**
+ Read an array from a character stream. Input format
+ is one integer, denoting the dimension (n), followed
+ by n whitespace-separated elments. Newlines are ignored
+
+ <p>
+ Note: the array being read into references new memory
+ storage. If the intent is to fill an existing conformant
+ array, use <code> cin >> B; A.inject(B) ); </code>
+ instead or read the elements in one-a-time by hand.
+
+ @param s the charater to read from (typically <code>std::in</code>)
+ @param A the array to read into.
+*/
+template <class T>
+std::istream& operator>>(std::istream &s, Fortran_Array1D<T> &A)
+{
+ int N;
+ s >> N;
+
+ Fortran_Array1D<T> B(N);
+ for (int i=1; i<=N; i++)
+ s >> B(i);
+ A = B;
+ return s;
+}
+
+
+template <class T>
+Fortran_Array1D<T> operator+(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Fortran_Array1D<T>();
+
+ else
+ {
+ Fortran_Array1D<T> C(n);
+
+ for (int i=1; i<=n; i++)
+ {
+ C(i) = A(i) + B(i);
+ }
+ return C;
+ }
+}
+
+
+
+template <class T>
+Fortran_Array1D<T> operator-(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Fortran_Array1D<T>();
+
+ else
+ {
+ Fortran_Array1D<T> C(n);
+
+ for (int i=1; i<=n; i++)
+ {
+ C(i) = A(i) - B(i);
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array1D<T> operator*(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Fortran_Array1D<T>();
+
+ else
+ {
+ Fortran_Array1D<T> C(n);
+
+ for (int i=1; i<=n; i++)
+ {
+ C(i) = A(i) * B(i);
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array1D<T> operator/(const Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() != n )
+ return Fortran_Array1D<T>();
+
+ else
+ {
+ Fortran_Array1D<T> C(n);
+
+ for (int i=1; i<=n; i++)
+ {
+ C(i) = A(i) / B(i);
+ }
+ return C;
+ }
+}
+
+
+
+
+
+
+
+
+
+template <class T>
+Fortran_Array1D<T>& operator+=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=1; i<=n; i++)
+ {
+ A(i) += B(i);
+ }
+ }
+ return A;
+}
+
+
+
+
+template <class T>
+Fortran_Array1D<T>& operator-=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=1; i<=n; i++)
+ {
+ A(i) -= B(i);
+ }
+ }
+ return A;
+}
+
+
+
+template <class T>
+Fortran_Array1D<T>& operator*=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=1; i<=n; i++)
+ {
+ A(i) *= B(i);
+ }
+ }
+ return A;
+}
+
+
+
+
+template <class T>
+Fortran_Array1D<T>& operator/=(Fortran_Array1D<T> &A, const Fortran_Array1D<T> &B)
+{
+ int n = A.dim1();
+
+ if (B.dim1() == n)
+ {
+ for (int i=1; i<=n; i++)
+ {
+ A(i) /= B(i);
+ }
+ }
+ return A;
+}
+
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_fortran_array2d.h b/lib/include/tnt/tnt_fortran_array2d.h
new file mode 100644
index 0000000..f307536
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array2d.h
@@ -0,0 +1,225 @@
+/*
+*
+* Template Numerical Toolkit (TNT): Two-dimensional Fortran numerical array
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_FORTRAN_ARRAY2D_H
+#define TNT_FORTRAN_ARRAY2D_H
+
+#include <cstdlib>
+#include <iostream>
+
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+#include "tnt_i_refvec.h"
+
+namespace TNT
+{
+
+template <class T>
+class Fortran_Array2D
+{
+
+
+ private:
+ i_refvec<T> v_;
+ int m_;
+ int n_;
+ T* data_;
+
+
+ void initialize_(int n);
+ void copy_(T* p, const T* q, int len);
+ void set_(T* begin, T* end, const T& val);
+
+ public:
+
+ typedef T value_type;
+
+ Fortran_Array2D();
+ Fortran_Array2D(int m, int n);
+ Fortran_Array2D(int m, int n, T *a);
+ Fortran_Array2D(int m, int n, const T &a);
+ inline Fortran_Array2D(const Fortran_Array2D &A);
+ inline Fortran_Array2D & operator=(const T &a);
+ inline Fortran_Array2D & operator=(const Fortran_Array2D &A);
+ inline Fortran_Array2D & ref(const Fortran_Array2D &A);
+ Fortran_Array2D copy() const;
+ Fortran_Array2D & inject(const Fortran_Array2D & A);
+ inline T& operator()(int i, int j);
+ inline const T& operator()(int i, int j) const ;
+ inline int dim1() const;
+ inline int dim2() const;
+ ~Fortran_Array2D();
+
+ /* extended interface */
+
+ inline int ref_count() const;
+
+};
+
+template <class T>
+Fortran_Array2D<T>::Fortran_Array2D() : v_(), m_(0), n_(0), data_(0) {}
+
+
+template <class T>
+Fortran_Array2D<T>::Fortran_Array2D(const Fortran_Array2D<T> &A) : v_(A.v_),
+ m_(A.m_), n_(A.n_), data_(A.data_) {}
+
+
+
+template <class T>
+Fortran_Array2D<T>::Fortran_Array2D(int m, int n) : v_(m*n), m_(m), n_(n),
+ data_(v_.begin()) {}
+
+template <class T>
+Fortran_Array2D<T>::Fortran_Array2D(int m, int n, const T &val) :
+ v_(m*n), m_(m), n_(n), data_(v_.begin())
+{
+ set_(data_, data_+m*n, val);
+}
+
+
+template <class T>
+Fortran_Array2D<T>::Fortran_Array2D(int m, int n, T *a) : v_(a),
+ m_(m), n_(n), data_(v_.begin()) {}
+
+
+
+
+template <class T>
+inline T& Fortran_Array2D<T>::operator()(int i, int j)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 1);
+ assert(i <= m_);
+ assert(j >= 1);
+ assert(j <= n_);
+#endif
+
+ return v_[ (j-1)*m_ + (i-1) ];
+
+}
+
+template <class T>
+inline const T& Fortran_Array2D<T>::operator()(int i, int j) const
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 1);
+ assert(i <= m_);
+ assert(j >= 1);
+ assert(j <= n_);
+#endif
+
+ return v_[ (j-1)*m_ + (i-1) ];
+
+}
+
+
+template <class T>
+Fortran_Array2D<T> & Fortran_Array2D<T>::operator=(const T &a)
+{
+ set_(data_, data_+m_*n_, a);
+ return *this;
+}
+
+template <class T>
+Fortran_Array2D<T> Fortran_Array2D<T>::copy() const
+{
+
+ Fortran_Array2D B(m_,n_);
+
+ B.inject(*this);
+ return B;
+}
+
+
+template <class T>
+Fortran_Array2D<T> & Fortran_Array2D<T>::inject(const Fortran_Array2D &A)
+{
+ if (m_ == A.m_ && n_ == A.n_)
+ copy_(data_, A.data_, m_*n_);
+
+ return *this;
+}
+
+
+
+template <class T>
+Fortran_Array2D<T> & Fortran_Array2D<T>::ref(const Fortran_Array2D<T> &A)
+{
+ if (this != &A)
+ {
+ v_ = A.v_;
+ m_ = A.m_;
+ n_ = A.n_;
+ data_ = A.data_;
+ }
+ return *this;
+}
+
+template <class T>
+Fortran_Array2D<T> & Fortran_Array2D<T>::operator=(const Fortran_Array2D<T> &A)
+{
+ return ref(A);
+}
+
+template <class T>
+inline int Fortran_Array2D<T>::dim1() const { return m_; }
+
+template <class T>
+inline int Fortran_Array2D<T>::dim2() const { return n_; }
+
+
+template <class T>
+Fortran_Array2D<T>::~Fortran_Array2D()
+{
+}
+
+template <class T>
+inline int Fortran_Array2D<T>::ref_count() const { return v_.ref_count(); }
+
+
+
+
+template <class T>
+void Fortran_Array2D<T>::set_(T* begin, T* end, const T& a)
+{
+ for (T* p=begin; p<end; p++)
+ *p = a;
+
+}
+
+template <class T>
+void Fortran_Array2D<T>::copy_(T* p, const T* q, int len)
+{
+ T *end = p + len;
+ while (p<end )
+ *p++ = *q++;
+
+}
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_FORTRAN_ARRAY2D_H */
+
diff --git a/lib/include/tnt/tnt_fortran_array2d_utils.h b/lib/include/tnt/tnt_fortran_array2d_utils.h
new file mode 100644
index 0000000..bb68673
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array2d_utils.h
@@ -0,0 +1,236 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_FORTRAN_ARRAY2D_UTILS_H
+#define TNT_FORTRAN_ARRAY2D_UTILS_H
+
+#include <iostream>
+
+namespace TNT
+{
+
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Fortran_Array2D<T> &A)
+{
+ int M=A.dim1();
+ int N=A.dim2();
+
+ s << M << " " << N << "\n";
+
+ for (int i=1; i<=M; i++)
+ {
+ for (int j=1; j<=N; j++)
+ {
+ s << A(i,j) << " ";
+ }
+ s << "\n";
+ }
+
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Fortran_Array2D<T> &A)
+{
+
+ int M, N;
+
+ s >> M >> N;
+
+ Fortran_Array2D<T> B(M,N);
+
+ for (int i=1; i<=M; i++)
+ for (int j=1; j<=N; j++)
+ {
+ s >> B(i,j);
+ }
+
+ A = B;
+ return s;
+}
+
+
+
+
+template <class T>
+Fortran_Array2D<T> operator+(const Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Fortran_Array2D<T>();
+
+ else
+ {
+ Fortran_Array2D<T> C(m,n);
+
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ C(i,j) = A(i,j) + B(i,j);
+ }
+ return C;
+ }
+}
+
+template <class T>
+Fortran_Array2D<T> operator-(const Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Fortran_Array2D<T>();
+
+ else
+ {
+ Fortran_Array2D<T> C(m,n);
+
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ C(i,j) = A(i,j) - B(i,j);
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array2D<T> operator*(const Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Fortran_Array2D<T>();
+
+ else
+ {
+ Fortran_Array2D<T> C(m,n);
+
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ C(i,j) = A(i,j) * B(i,j);
+ }
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array2D<T> operator/(const Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() != m || B.dim2() != n )
+ return Fortran_Array2D<T>();
+
+ else
+ {
+ Fortran_Array2D<T> C(m,n);
+
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ C(i,j) = A(i,j) / B(i,j);
+ }
+ return C;
+ }
+}
+
+
+
+template <class T>
+Fortran_Array2D<T>& operator+=(Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ A(i,j) += B(i,j);
+ }
+ }
+ return A;
+}
+
+template <class T>
+Fortran_Array2D<T>& operator-=(Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ A(i,j) -= B(i,j);
+ }
+ }
+ return A;
+}
+
+template <class T>
+Fortran_Array2D<T>& operator*=(Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ A(i,j) *= B(i,j);
+ }
+ }
+ return A;
+}
+
+template <class T>
+Fortran_Array2D<T>& operator/=(Fortran_Array2D<T> &A, const Fortran_Array2D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+
+ if (B.dim1() == m || B.dim2() == n )
+ {
+ for (int i=1; i<=m; i++)
+ {
+ for (int j=1; j<=n; j++)
+ A(i,j) /= B(i,j);
+ }
+ }
+ return A;
+}
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_fortran_array3d.h b/lib/include/tnt/tnt_fortran_array3d.h
new file mode 100644
index 0000000..e51affb
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array3d.h
@@ -0,0 +1,223 @@
+/*
+*
+* Template Numerical Toolkit (TNT): Three-dimensional Fortran numerical array
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_FORTRAN_ARRAY3D_H
+#define TNT_FORTRAN_ARRAY3D_H
+
+#include <cstdlib>
+#include <iostream>
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+#include "tnt_i_refvec.h"
+
+namespace TNT
+{
+
+template <class T>
+class Fortran_Array3D
+{
+
+
+ private:
+
+
+ i_refvec<T> v_;
+ int m_;
+ int n_;
+ int k_;
+ T* data_;
+
+ public:
+
+ typedef T value_type;
+
+ Fortran_Array3D();
+ Fortran_Array3D(int m, int n, int k);
+ Fortran_Array3D(int m, int n, int k, T *a);
+ Fortran_Array3D(int m, int n, int k, const T &a);
+ inline Fortran_Array3D(const Fortran_Array3D &A);
+ inline Fortran_Array3D & operator=(const T &a);
+ inline Fortran_Array3D & operator=(const Fortran_Array3D &A);
+ inline Fortran_Array3D & ref(const Fortran_Array3D &A);
+ Fortran_Array3D copy() const;
+ Fortran_Array3D & inject(const Fortran_Array3D & A);
+ inline T& operator()(int i, int j, int k);
+ inline const T& operator()(int i, int j, int k) const ;
+ inline int dim1() const;
+ inline int dim2() const;
+ inline int dim3() const;
+ inline int ref_count() const;
+ ~Fortran_Array3D();
+
+
+};
+
+template <class T>
+Fortran_Array3D<T>::Fortran_Array3D() : v_(), m_(0), n_(0), k_(0), data_(0) {}
+
+
+template <class T>
+Fortran_Array3D<T>::Fortran_Array3D(const Fortran_Array3D<T> &A) :
+ v_(A.v_), m_(A.m_), n_(A.n_), k_(A.k_), data_(A.data_) {}
+
+
+
+template <class T>
+Fortran_Array3D<T>::Fortran_Array3D(int m, int n, int k) :
+ v_(m*n*k), m_(m), n_(n), k_(k), data_(v_.begin()) {}
+
+
+
+template <class T>
+Fortran_Array3D<T>::Fortran_Array3D(int m, int n, int k, const T &val) :
+ v_(m*n*k), m_(m), n_(n), k_(k), data_(v_.begin())
+{
+ for (T* p = data_; p < data_ + m*n*k; p++)
+ *p = val;
+}
+
+template <class T>
+Fortran_Array3D<T>::Fortran_Array3D(int m, int n, int k, T *a) :
+ v_(a), m_(m), n_(n), k_(k), data_(v_.begin()) {}
+
+
+
+
+template <class T>
+inline T& Fortran_Array3D<T>::operator()(int i, int j, int k)
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 1);
+ assert(i <= m_);
+ assert(j >= 1);
+ assert(j <= n_);
+ assert(k >= 1);
+ assert(k <= k_);
+#endif
+
+ return data_[(k-1)*m_*n_ + (j-1) * m_ + i-1];
+
+}
+
+template <class T>
+inline const T& Fortran_Array3D<T>::operator()(int i, int j, int k) const
+{
+#ifdef TNT_BOUNDS_CHECK
+ assert(i >= 1);
+ assert(i <= m_);
+ assert(j >= 1);
+ assert(j <= n_);
+ assert(k >= 1);
+ assert(k <= k_);
+#endif
+
+ return data_[(k-1)*m_*n_ + (j-1) * m_ + i-1];
+}
+
+
+template <class T>
+Fortran_Array3D<T> & Fortran_Array3D<T>::operator=(const T &a)
+{
+
+ T *end = data_ + m_*n_*k_;
+
+ for (T *p=data_; p != end; *p++ = a);
+
+ return *this;
+}
+
+template <class T>
+Fortran_Array3D<T> Fortran_Array3D<T>::copy() const
+{
+
+ Fortran_Array3D B(m_, n_, k_);
+ B.inject(*this);
+ return B;
+
+}
+
+
+template <class T>
+Fortran_Array3D<T> & Fortran_Array3D<T>::inject(const Fortran_Array3D &A)
+{
+
+ if (m_ == A.m_ && n_ == A.n_ && k_ == A.k_)
+ {
+ T *p = data_;
+ T *end = data_ + m_*n_*k_;
+ const T* q = A.data_;
+ for (; p < end; *p++ = *q++);
+ }
+ return *this;
+}
+
+
+
+
+template <class T>
+Fortran_Array3D<T> & Fortran_Array3D<T>::ref(const Fortran_Array3D<T> &A)
+{
+
+ if (this != &A)
+ {
+ v_ = A.v_;
+ m_ = A.m_;
+ n_ = A.n_;
+ k_ = A.k_;
+ data_ = A.data_;
+ }
+ return *this;
+}
+
+template <class T>
+Fortran_Array3D<T> & Fortran_Array3D<T>::operator=(const Fortran_Array3D<T> &A)
+{
+ return ref(A);
+}
+
+template <class T>
+inline int Fortran_Array3D<T>::dim1() const { return m_; }
+
+template <class T>
+inline int Fortran_Array3D<T>::dim2() const { return n_; }
+
+template <class T>
+inline int Fortran_Array3D<T>::dim3() const { return k_; }
+
+
+template <class T>
+inline int Fortran_Array3D<T>::ref_count() const
+{
+ return v_.ref_count();
+}
+
+template <class T>
+Fortran_Array3D<T>::~Fortran_Array3D()
+{
+}
+
+
+} /* namespace TNT */
+
+#endif
+/* TNT_FORTRAN_ARRAY3D_H */
+
diff --git a/lib/include/tnt/tnt_fortran_array3d_utils.h b/lib/include/tnt/tnt_fortran_array3d_utils.h
new file mode 100644
index 0000000..a13a275
--- /dev/null
+++ b/lib/include/tnt/tnt_fortran_array3d_utils.h
@@ -0,0 +1,249 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_FORTRAN_ARRAY3D_UTILS_H
+#define TNT_FORTRAN_ARRAY3D_UTILS_H
+
+#include <cstdlib>
+#include <cassert>
+
+namespace TNT
+{
+
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Fortran_Array3D<T> &A)
+{
+ int M=A.dim1();
+ int N=A.dim2();
+ int K=A.dim3();
+
+ s << M << " " << N << " " << K << "\n";
+
+ for (int i=1; i<=M; i++)
+ {
+ for (int j=1; j<=N; j++)
+ {
+ for (int k=1; k<=K; k++)
+ s << A(i,j,k) << " ";
+ s << "\n";
+ }
+ s << "\n";
+ }
+
+
+ return s;
+}
+
+template <class T>
+std::istream& operator>>(std::istream &s, Fortran_Array3D<T> &A)
+{
+
+ int M, N, K;
+
+ s >> M >> N >> K;
+
+ Fortran_Array3D<T> B(M,N,K);
+
+ for (int i=1; i<=M; i++)
+ for (int j=1; j<=N; j++)
+ for (int k=1; k<=K; k++)
+ s >> B(i,j,k);
+
+ A = B;
+ return s;
+}
+
+
+template <class T>
+Fortran_Array3D<T> operator+(const Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Fortran_Array3D<T>();
+
+ else
+ {
+ Fortran_Array3D<T> C(m,n,p);
+
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ C(i,j,k) = A(i,j,k)+ B(i,j,k);
+
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array3D<T> operator-(const Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Fortran_Array3D<T>();
+
+ else
+ {
+ Fortran_Array3D<T> C(m,n,p);
+
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ C(i,j,k) = A(i,j,k)- B(i,j,k);
+
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array3D<T> operator*(const Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Fortran_Array3D<T>();
+
+ else
+ {
+ Fortran_Array3D<T> C(m,n,p);
+
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ C(i,j,k) = A(i,j,k)* B(i,j,k);
+
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array3D<T> operator/(const Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() != m || B.dim2() != n || B.dim3() != p )
+ return Fortran_Array3D<T>();
+
+ else
+ {
+ Fortran_Array3D<T> C(m,n,p);
+
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ C(i,j,k) = A(i,j,k)/ B(i,j,k);
+
+ return C;
+ }
+}
+
+
+template <class T>
+Fortran_Array3D<T>& operator+=(Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ A(i,j,k) += B(i,j,k);
+ }
+
+ return A;
+}
+
+
+template <class T>
+Fortran_Array3D<T>& operator-=(Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ A(i,j,k) -= B(i,j,k);
+ }
+
+ return A;
+}
+
+
+template <class T>
+Fortran_Array3D<T>& operator*=(Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ A(i,j,k) *= B(i,j,k);
+ }
+
+ return A;
+}
+
+
+template <class T>
+Fortran_Array3D<T>& operator/=(Fortran_Array3D<T> &A, const Fortran_Array3D<T> &B)
+{
+ int m = A.dim1();
+ int n = A.dim2();
+ int p = A.dim3();
+
+ if (B.dim1() == m && B.dim2() == n && B.dim3() == p )
+ {
+ for (int i=1; i<=m; i++)
+ for (int j=1; j<=n; j++)
+ for (int k=1; k<=p; k++)
+ A(i,j,k) /= B(i,j,k);
+ }
+
+ return A;
+}
+
+
+} // namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_i_refvec.h b/lib/include/tnt/tnt_i_refvec.h
new file mode 100644
index 0000000..5a67eb5
--- /dev/null
+++ b/lib/include/tnt/tnt_i_refvec.h
@@ -0,0 +1,243 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_I_REFVEC_H
+#define TNT_I_REFVEC_H
+
+#include <cstdlib>
+#include <iostream>
+
+#ifdef TNT_BOUNDS_CHECK
+#include <assert.h>
+#endif
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+namespace TNT
+{
+/*
+ Internal representation of ref-counted array. The TNT
+ arrays all use this building block.
+
+ <p>
+ If an array block is created by TNT, then every time
+ an assignment is made, the left-hand-side reference
+ is decreased by one, and the right-hand-side refernce
+ count is increased by one. If the array block was
+ external to TNT, the refernce count is a NULL pointer
+ regardless of how many references are made, since the
+ memory is not freed by TNT.
+
+
+
+*/
+template <class T>
+class i_refvec
+{
+
+
+ private:
+ T* data_;
+ int *ref_count_;
+
+
+ public:
+
+ i_refvec();
+ explicit i_refvec(int n);
+ inline i_refvec(T* data);
+ inline i_refvec(const i_refvec &v);
+ inline T* begin();
+ inline const T* begin() const;
+ inline T& operator[](int i);
+ inline const T& operator[](int i) const;
+ inline i_refvec<T> & operator=(const i_refvec<T> &V);
+ void copy_(T* p, const T* q, const T* e);
+ void set_(T* p, const T* b, const T* e);
+ inline int ref_count() const;
+ inline int is_null() const;
+ inline void destroy();
+ ~i_refvec();
+
+};
+
+template <class T>
+void i_refvec<T>::copy_(T* p, const T* q, const T* e)
+{
+ for (T* t=p; q<e; t++, q++)
+ *t= *q;
+}
+
+template <class T>
+i_refvec<T>::i_refvec() : data_(NULL), ref_count_(NULL) {}
+
+/**
+ In case n is 0 or negative, it does NOT call new.
+*/
+template <class T>
+i_refvec<T>::i_refvec(int n) : data_(NULL), ref_count_(NULL)
+{
+ if (n >= 1)
+ {
+#ifdef TNT_DEBUG
+ std::cout << "new data storage.\n";
+#endif
+ data_ = new T[n];
+ ref_count_ = new int;
+ *ref_count_ = 1;
+ }
+}
+
+template <class T>
+inline i_refvec<T>::i_refvec(const i_refvec<T> &V): data_(V.data_),
+ ref_count_(V.ref_count_)
+{
+ if (V.ref_count_ != NULL)
+ (*(V.ref_count_))++;
+}
+
+
+template <class T>
+i_refvec<T>::i_refvec(T* data) : data_(data), ref_count_(NULL) {}
+
+template <class T>
+inline T* i_refvec<T>::begin()
+{
+ return data_;
+}
+
+template <class T>
+inline const T& i_refvec<T>::operator[](int i) const
+{
+ return data_[i];
+}
+
+template <class T>
+inline T& i_refvec<T>::operator[](int i)
+{
+ return data_[i];
+}
+
+
+template <class T>
+inline const T* i_refvec<T>::begin() const
+{
+ return data_;
+}
+
+
+
+template <class T>
+i_refvec<T> & i_refvec<T>::operator=(const i_refvec<T> &V)
+{
+ if (this == &V)
+ return *this;
+
+
+ if (ref_count_ != NULL)
+ {
+ (*ref_count_) --;
+ if ((*ref_count_) == 0)
+ destroy();
+ }
+
+ data_ = V.data_;
+ ref_count_ = V.ref_count_;
+
+ if (V.ref_count_ != NULL)
+ (*(V.ref_count_))++;
+
+ return *this;
+}
+
+template <class T>
+void i_refvec<T>::destroy()
+{
+ if (ref_count_ != NULL)
+ {
+#ifdef TNT_DEBUG
+ std::cout << "destorying data... \n";
+#endif
+ delete ref_count_;
+
+#ifdef TNT_DEBUG
+ std::cout << "deleted ref_count_ ...\n";
+#endif
+ if (data_ != NULL)
+ delete []data_;
+#ifdef TNT_DEBUG
+ std::cout << "deleted data_[] ...\n";
+#endif
+ data_ = NULL;
+ }
+}
+
+/*
+* return 1 is vector is empty, 0 otherwise
+*
+* if is_null() is false and ref_count() is 0, then
+*
+*/
+template<class T>
+int i_refvec<T>::is_null() const
+{
+ return (data_ == NULL ? 1 : 0);
+}
+
+/*
+* returns -1 if data is external,
+* returns 0 if a is NULL array,
+* otherwise returns the positive number of vectors sharing
+* this data space.
+*/
+template <class T>
+int i_refvec<T>::ref_count() const
+{
+ if (data_ == NULL)
+ return 0;
+ else
+ return (ref_count_ != NULL ? *ref_count_ : -1) ;
+}
+
+template <class T>
+i_refvec<T>::~i_refvec()
+{
+ if (ref_count_ != NULL)
+ {
+ (*ref_count_)--;
+
+ if (*ref_count_ == 0)
+ destroy();
+ }
+}
+
+
+} /* namespace TNT */
+
+
+
+
+
+#endif
+/* TNT_I_REFVEC_H */
+
diff --git a/lib/include/tnt/tnt_math_utils.h b/lib/include/tnt/tnt_math_utils.h
new file mode 100644
index 0000000..f9c1c91
--- /dev/null
+++ b/lib/include/tnt/tnt_math_utils.h
@@ -0,0 +1,34 @@
+#ifndef MATH_UTILS_H
+#define MATH_UTILS_H
+
+/* needed for fabs, sqrt() below */
+#include <cmath>
+
+
+
+namespace TNT
+{
+/**
+ @returns hypotenuse of real (non-complex) scalars a and b by
+ avoiding underflow/overflow
+ using (a * sqrt( 1 + (b/a) * (b/a))), rather than
+ sqrt(a*a + b*b).
+*/
+template <class Real>
+Real hypot(const Real &a, const Real &b)
+{
+
+ if (a== 0)
+ return abs(b);
+ else
+ {
+ Real c = b/a;
+ return fabs(a) * sqrt(1 + c*c);
+ }
+}
+} /* TNT namespace */
+
+
+
+#endif
+/* MATH_UTILS_H */
diff --git a/lib/include/tnt/tnt_sparse_matrix_csr.h b/lib/include/tnt/tnt_sparse_matrix_csr.h
new file mode 100644
index 0000000..0d4fde1
--- /dev/null
+++ b/lib/include/tnt/tnt_sparse_matrix_csr.h
@@ -0,0 +1,103 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_SPARSE_MATRIX_CSR_H
+#define TNT_SPARSE_MATRIX_CSR_H
+
+#include "tnt_array1d.h"
+
+namespace TNT
+{
+
+
+/**
+ Read-only view of a sparse matrix in compressed-row storage
+ format. Neither array elements (nonzeros) nor sparsity
+ structure can be modified. If modifications are required,
+ create a new view.
+
+ <p>
+ Index values begin at 0.
+
+ <p>
+ <b>Storage requirements:</b> An (m x n) matrix with
+ nz nonzeros requires no more than ((T+I)*nz + M*I)
+ bytes, where T is the size of data elements and
+ I is the size of integers.
+
+
+*/
+template <class T>
+class Sparse_Matrix_CompRow {
+
+private:
+ Array1D<T> val_; // data values (nz_ elements)
+ Array1D<int> rowptr_; // row_ptr (dim_[0]+1 elements)
+ Array1D<int> colind_; // col_ind (nz_ elements)
+
+ int dim1_; // number of rows
+ int dim2_; // number of cols
+
+public:
+
+ Sparse_Matrix_CompRow(const Sparse_Matrix_CompRow &S);
+ Sparse_Matrix_CompRow(int M, int N, int nz, const T *val,
+ const int *r, const int *c);
+
+
+
+ inline const T& val(int i) const { return val_[i]; }
+ inline const int& row_ptr(int i) const { return rowptr_[i]; }
+ inline const int& col_ind(int i) const { return colind_[i];}
+
+ inline int dim1() const {return dim1_;}
+ inline int dim2() const {return dim2_;}
+ int NumNonzeros() const {return val_.dim1();}
+
+
+ Sparse_Matrix_CompRow& operator=(
+ const Sparse_Matrix_CompRow &R);
+
+
+
+};
+
+/**
+ Construct a read-only view of existing sparse matrix in
+ compressed-row storage format.
+
+ @param M the number of rows of sparse matrix
+ @param N the number of columns of sparse matrix
+ @param nz the number of nonzeros
+ @param val a contiguous list of nonzero values
+ @param r row-pointers: r[i] denotes the begining position of row i
+ (i.e. the ith row begins at val[row[i]]).
+ @param c column-indices: c[i] denotes the column location of val[i]
+*/
+template <class T>
+Sparse_Matrix_CompRow<T>::Sparse_Matrix_CompRow(int M, int N, int nz,
+ const T *val, const int *r, const int *c) : val_(nz,val),
+ rowptr_(M, r), colind_(nz, c), dim1_(M), dim2_(N) {}
+
+
+}
+// namespace TNT
+
+#endif
diff --git a/lib/include/tnt/tnt_stopwatch.h b/lib/include/tnt/tnt_stopwatch.h
new file mode 100644
index 0000000..8dc5d23
--- /dev/null
+++ b/lib/include/tnt/tnt_stopwatch.h
@@ -0,0 +1,95 @@
+/*
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef STOPWATCH_H
+#define STOPWATCH_H
+
+// for clock() and CLOCKS_PER_SEC
+#include <time.h>
+
+
+namespace TNT
+{
+
+inline static double seconds(void)
+{
+ const double secs_per_tick = 1.0 / CLOCKS_PER_SEC;
+ return ( (double) clock() ) * secs_per_tick;
+}
+
+class Stopwatch {
+ private:
+ int running_;
+ double start_time_;
+ double total_;
+
+ public:
+ inline Stopwatch();
+ inline void start();
+ inline double stop();
+ inline double read();
+ inline void resume();
+ inline int running();
+};
+
+inline Stopwatch::Stopwatch() : running_(0), start_time_(0.0), total_(0.0) {}
+
+void Stopwatch::start()
+{
+ running_ = 1;
+ total_ = 0.0;
+ start_time_ = seconds();
+}
+
+double Stopwatch::stop()
+{
+ if (running_)
+ {
+ total_ += (seconds() - start_time_);
+ running_ = 0;
+ }
+ return total_;
+}
+
+inline void Stopwatch::resume()
+{
+ if (!running_)
+ {
+ start_time_ = seconds();
+ running_ = 1;
+ }
+}
+
+
+inline double Stopwatch::read()
+{
+ if (running_)
+ {
+ stop();
+ resume();
+ }
+ return total_;
+}
+
+
+} /* TNT namespace */
+#endif
+
+
+
diff --git a/lib/include/tnt/tnt_subscript.h b/lib/include/tnt/tnt_subscript.h
new file mode 100644
index 0000000..d8fe120
--- /dev/null
+++ b/lib/include/tnt/tnt_subscript.h
@@ -0,0 +1,54 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+#ifndef TNT_SUBSCRPT_H
+#define TNT_SUBSCRPT_H
+
+
+//---------------------------------------------------------------------
+// This definition describes the default TNT data type used for
+// indexing into TNT matrices and vectors. The data type should
+// be wide enough to index into large arrays. It defaults to an
+// "int", but can be overriden at compile time redefining TNT_SUBSCRIPT_TYPE,
+// e.g.
+//
+// c++ -DTNT_SUBSCRIPT_TYPE='unsigned int' ...
+//
+//---------------------------------------------------------------------
+//
+
+#ifndef TNT_SUBSCRIPT_TYPE
+#define TNT_SUBSCRIPT_TYPE int
+#endif
+
+namespace TNT
+{
+ typedef TNT_SUBSCRIPT_TYPE Subscript;
+} /* namespace TNT */
+
+
+// () indexing in TNT means 1-offset, i.e. x(1) and A(1,1) are the
+// first elements. This offset is left as a macro for future
+// purposes, but should not be changed in the current release.
+//
+//
+#define TNT_BASE_OFFSET (1)
+
+#endif
diff --git a/lib/include/tnt/tnt_vec.h b/lib/include/tnt/tnt_vec.h
new file mode 100644
index 0000000..3455d79
--- /dev/null
+++ b/lib/include/tnt/tnt_vec.h
@@ -0,0 +1,404 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+
+
+#ifndef TNT_VEC_H
+#define TNT_VEC_H
+
+#include "tnt_subscript.h"
+#include <cstdlib>
+#include <cassert>
+#include <iostream>
+#include <sstream>
+
+namespace TNT
+{
+
+/**
+ <b>[Deprecatred]</b> Value-based vector class from pre-1.0
+ TNT version. Kept here for backward compatiblity, but should
+ use the newer TNT::Array1D classes instead.
+
+*/
+
+template <class T>
+class Vector
+{
+
+
+ public:
+
+ typedef Subscript size_type;
+ typedef T value_type;
+ typedef T element_type;
+ typedef T* pointer;
+ typedef T* iterator;
+ typedef T& reference;
+ typedef const T* const_iterator;
+ typedef const T& const_reference;
+
+ Subscript lbound() const { return 1;}
+
+ protected:
+ T* v_;
+ T* vm1_; // pointer adjustment for optimzied 1-offset indexing
+ Subscript n_;
+
+ // internal helper function to create the array
+ // of row pointers
+
+ void initialize(Subscript N)
+ {
+ // adjust pointers so that they are 1-offset:
+ // v_[] is the internal contiguous array, it is still 0-offset
+ //
+ assert(v_ == NULL);
+ v_ = new T[N];
+ assert(v_ != NULL);
+ vm1_ = v_-1;
+ n_ = N;
+ }
+
+ void copy(const T* v)
+ {
+ Subscript N = n_;
+ Subscript i;
+
+#ifdef TNT_UNROLL_LOOPS
+ Subscript Nmod4 = N & 3;
+ Subscript N4 = N - Nmod4;
+
+ for (i=0; i<N4; i+=4)
+ {
+ v_[i] = v[i];
+ v_[i+1] = v[i+1];
+ v_[i+2] = v[i+2];
+ v_[i+3] = v[i+3];
+ }
+
+ for (i=N4; i< N; i++)
+ v_[i] = v[i];
+#else
+
+ for (i=0; i< N; i++)
+ v_[i] = v[i];
+#endif
+ }
+
+ void set(const T& val)
+ {
+ Subscript N = n_;
+ Subscript i;
+
+#ifdef TNT_UNROLL_LOOPS
+ Subscript Nmod4 = N & 3;
+ Subscript N4 = N - Nmod4;
+
+ for (i=0; i<N4; i+=4)
+ {
+ v_[i] = val;
+ v_[i+1] = val;
+ v_[i+2] = val;
+ v_[i+3] = val;
+ }
+
+ for (i=N4; i< N; i++)
+ v_[i] = val;
+#else
+
+ for (i=0; i< N; i++)
+ v_[i] = val;
+
+#endif
+ }
+
+
+
+ void destroy()
+ {
+ /* do nothing, if no memory has been previously allocated */
+ if (v_ == NULL) return ;
+
+ /* if we are here, then matrix was previously allocated */
+ delete [] (v_);
+
+ v_ = NULL;
+ vm1_ = NULL;
+ }
+
+
+ public:
+
+ // access
+
+ iterator begin() { return v_;}
+ iterator end() { return v_ + n_; }
+ const iterator begin() const { return v_;}
+ const iterator end() const { return v_ + n_; }
+
+ // destructor
+
+ ~Vector()
+ {
+ destroy();
+ }
+
+ // constructors
+
+ Vector() : v_(0), vm1_(0), n_(0) {};
+
+ Vector(const Vector<T> &A) : v_(0), vm1_(0), n_(0)
+ {
+ initialize(A.n_);
+ copy(A.v_);
+ }
+
+ Vector(Subscript N, const T& value = T()) : v_(0), vm1_(0), n_(0)
+ {
+ initialize(N);
+ set(value);
+ }
+
+ Vector(Subscript N, const T* v) : v_(0), vm1_(0), n_(0)
+ {
+ initialize(N);
+ copy(v);
+ }
+
+ Vector(Subscript N, char *s) : v_(0), vm1_(0), n_(0)
+ {
+ initialize(N);
+ std::istringstream ins(s);
+
+ Subscript i;
+
+ for (i=0; i<N; i++)
+ ins >> v_[i];
+ }
+
+
+ // methods
+ //
+ Vector<T>& newsize(Subscript N)
+ {
+ if (n_ == N) return *this;
+
+ destroy();
+ initialize(N);
+
+ return *this;
+ }
+
+
+ // assignments
+ //
+ Vector<T>& operator=(const Vector<T> &A)
+ {
+ if (v_ == A.v_)
+ return *this;
+
+ if (n_ == A.n_) // no need to re-alloc
+ copy(A.v_);
+
+ else
+ {
+ destroy();
+ initialize(A.n_);
+ copy(A.v_);
+ }
+
+ return *this;
+ }
+
+ Vector<T>& operator=(const T& scalar)
+ {
+ set(scalar);
+ return *this;
+ }
+
+ inline Subscript dim() const
+ {
+ return n_;
+ }
+
+ inline Subscript size() const
+ {
+ return n_;
+ }
+
+
+ inline reference operator()(Subscript i)
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= n_) ;
+#endif
+ return vm1_[i];
+ }
+
+ inline const_reference operator() (Subscript i) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(1<=i);
+ assert(i <= n_) ;
+#endif
+ return vm1_[i];
+ }
+
+ inline reference operator[](Subscript i)
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(0<=i);
+ assert(i < n_) ;
+#endif
+ return v_[i];
+ }
+
+ inline const_reference operator[](Subscript i) const
+ {
+#ifdef TNT_BOUNDS_CHECK
+ assert(0<=i);
+
+
+
+
+
+
+ assert(i < n_) ;
+#endif
+ return v_[i];
+ }
+
+
+
+};
+
+
+/* *************************** I/O ********************************/
+
+template <class T>
+std::ostream& operator<<(std::ostream &s, const Vector<T> &A)
+{
+ Subscript N=A.dim();
+
+ s << N << "\n";
+
+ for (Subscript i=0; i<N; i++)
+ s << A[i] << " " << "\n";
+ s << "\n";
+
+ return s;
+}
+
+template <class T>
+std::istream & operator>>(std::istream &s, Vector<T> &A)
+{
+
+ Subscript N;
+
+ s >> N;
+
+ if ( !(N == A.size() ))
+ {
+ A.newsize(N);
+ }
+
+
+ for (Subscript i=0; i<N; i++)
+ s >> A[i];
+
+
+ return s;
+}
+
+// *******************[ basic matrix algorithms ]***************************
+
+
+template <class T>
+Vector<T> operator+(const Vector<T> &A,
+ const Vector<T> &B)
+{
+ Subscript N = A.dim();
+
+ assert(N==B.dim());
+
+ Vector<T> tmp(N);
+ Subscript i;
+
+ for (i=0; i<N; i++)
+ tmp[i] = A[i] + B[i];
+
+ return tmp;
+}
+
+template <class T>
+Vector<T> operator-(const Vector<T> &A,
+ const Vector<T> &B)
+{
+ Subscript N = A.dim();
+
+ assert(N==B.dim());
+
+ Vector<T> tmp(N);
+ Subscript i;
+
+ for (i=0; i<N; i++)
+ tmp[i] = A[i] - B[i];
+
+ return tmp;
+}
+
+template <class T>
+Vector<T> operator*(const Vector<T> &A,
+ const Vector<T> &B)
+{
+ Subscript N = A.dim();
+
+ assert(N==B.dim());
+
+ Vector<T> tmp(N);
+ Subscript i;
+
+ for (i=0; i<N; i++)
+ tmp[i] = A[i] * B[i];
+
+ return tmp;
+}
+
+
+template <class T>
+T dot_prod(const Vector<T> &A, const Vector<T> &B)
+{
+ Subscript N = A.dim();
+ assert(N == B.dim());
+
+ Subscript i;
+ T sum = 0;
+
+ for (i=0; i<N; i++)
+ sum += A[i] * B[i];
+
+ return sum;
+}
+
+} /* namespace TNT */
+
+#endif
+// TNT_VEC_H
diff --git a/lib/include/tnt/tnt_version.h b/lib/include/tnt/tnt_version.h
new file mode 100644
index 0000000..047e7d3
--- /dev/null
+++ b/lib/include/tnt/tnt_version.h
@@ -0,0 +1,39 @@
+/*
+*
+* Template Numerical Toolkit (TNT)
+*
+* Mathematical and Computational Sciences Division
+* National Institute of Technology,
+* Gaithersburg, MD USA
+*
+*
+* This software was developed at the National Institute of Standards and
+* Technology (NIST) by employees of the Federal Government in the course
+* of their official duties. Pursuant to title 17 Section 105 of the
+* United States Code, this software is not subject to copyright protection
+* and is in the public domain. NIST assumes no responsibility whatsoever for
+* its use by other parties, and makes no guarantees, expressed or implied,
+* about its quality, reliability, or any other characteristic.
+*
+*/
+
+#ifndef TNT_VERSION_H
+#define TNT_VERSION_H
+
+
+//---------------------------------------------------------------------
+// current version
+//---------------------------------------------------------------------
+
+
+#define TNT_MAJOR_VERSION '1'
+#define TNT_MINOR_VERSION '2'
+#define TNT_SUBMINOR_VERSION '6'
+#define TNT_VERSION_STRING "1.2.6"
+
+
+
+
+
+#endif
+// TNT_VERSION_H