summaryrefslogtreecommitdiffstats
path: root/python/astra/optomo.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/astra/optomo.py')
-rw-r--r--python/astra/optomo.py197
1 files changed, 197 insertions, 0 deletions
diff --git a/python/astra/optomo.py b/python/astra/optomo.py
new file mode 100644
index 0000000..0c37353
--- /dev/null
+++ b/python/astra/optomo.py
@@ -0,0 +1,197 @@
+#-----------------------------------------------------------------------
+#Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam
+#
+#Author: Daniel M. Pelt
+#Contact: D.M.Pelt@cwi.nl
+#Website: http://dmpelt.github.io/pyastratoolbox/
+#
+#
+#This file is part of the Python interface to the
+#All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
+#
+#The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with the Python interface to the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+#
+#-----------------------------------------------------------------------
+
+from . import data2d
+from . import data3d
+from . import projector
+from . import projector3d
+from . import creators
+from . import algorithm
+from . import functions
+import numpy as np
+from six.moves import range, reduce
+import operator
+import scipy.sparse.linalg
+
+class OpTomo(scipy.sparse.linalg.LinearOperator):
+ """Object that imitates a projection matrix with a given projector.
+
+ This object can do forward projection by using the ``*`` operator::
+
+ W = astra.OpTomo(proj_id)
+ fp = W*image
+ bp = W.T*sinogram
+
+ It can also be used in minimization methods of the :mod:`scipy.sparse.linalg` module::
+
+ W = astra.OpTomo(proj_id)
+ output = scipy.sparse.linalg.lsqr(W,sinogram)
+
+ :param proj_id: ID to a projector.
+ :type proj_id: :class:`int`
+ """
+
+ def __init__(self,proj_id):
+ self.dtype = np.float32
+ try:
+ self.vg = projector.volume_geometry(proj_id)
+ self.pg = projector.projection_geometry(proj_id)
+ self.data_mod = data2d
+ self.appendString = ""
+ if projector.is_cuda(proj_id):
+ self.appendString += "_CUDA"
+ except Exception:
+ self.vg = projector3d.volume_geometry(proj_id)
+ self.pg = projector3d.projection_geometry(proj_id)
+ self.data_mod = data3d
+ self.appendString = "3D"
+ if projector3d.is_cuda(proj_id):
+ self.appendString += "_CUDA"
+
+ self.vshape = functions.geom_size(self.vg)
+ self.vsize = reduce(operator.mul,self.vshape)
+ self.sshape = functions.geom_size(self.pg)
+ self.ssize = reduce(operator.mul,self.sshape)
+
+ self.shape = (self.ssize, self.vsize)
+
+ self.proj_id = proj_id
+
+ self.T = OpTomoTranspose(self)
+
+ def __checkArray(self, arr, shp):
+ if len(arr.shape)==1:
+ arr = arr.reshape(shp)
+ if arr.dtype != np.float32:
+ arr = arr.astype(np.float32)
+ if arr.flags['C_CONTIGUOUS']==False:
+ arr = np.ascontiguousarray(arr)
+ return arr
+
+ def _matvec(self,v):
+ """Implements the forward operator.
+
+ :param v: Volume to forward project.
+ :type v: :class:`numpy.ndarray`
+ """
+ v = self.__checkArray(v, self.vshape)
+ vid = self.data_mod.link('-vol',self.vg,v)
+ s = np.zeros(self.sshape,dtype=np.float32)
+ sid = self.data_mod.link('-sino',self.pg,s)
+
+ cfg = creators.astra_dict('FP'+self.appendString)
+ cfg['ProjectionDataId'] = sid
+ cfg['VolumeDataId'] = vid
+ cfg['ProjectorId'] = self.proj_id
+ fp_id = algorithm.create(cfg)
+ algorithm.run(fp_id)
+
+ algorithm.delete(fp_id)
+ self.data_mod.delete([vid,sid])
+ return s.flatten()
+
+ def rmatvec(self,s):
+ """Implements the transpose operator.
+
+ :param s: The projection data.
+ :type s: :class:`numpy.ndarray`
+ """
+ s = self.__checkArray(s, self.sshape)
+ sid = self.data_mod.link('-sino',self.pg,s)
+ v = np.zeros(self.vshape,dtype=np.float32)
+ vid = self.data_mod.link('-vol',self.vg,v)
+
+ cfg = creators.astra_dict('BP'+self.appendString)
+ cfg['ProjectionDataId'] = sid
+ cfg['ReconstructionDataId'] = vid
+ cfg['ProjectorId'] = self.proj_id
+ bp_id = algorithm.create(cfg)
+ algorithm.run(bp_id)
+
+ algorithm.delete(bp_id)
+ self.data_mod.delete([vid,sid])
+ return v.flatten()
+
+ def __mul__(self,v):
+ """Provides easy forward operator by *.
+
+ :param v: Volume to forward project.
+ :type v: :class:`numpy.ndarray`
+ """
+ # Catch the case of a forward projection of a 2D/3D image
+ if isinstance(v, np.ndarray) and v.shape==self.vshape:
+ return self._matvec(v)
+ return scipy.sparse.linalg.LinearOperator.__mul__(self, v)
+
+ def reconstruct(self, method, s, iterations=1, extraOptions = {}):
+ """Reconstruct an object.
+
+ :param method: Method to use for reconstruction.
+ :type method: :class:`string`
+ :param s: The projection data.
+ :type s: :class:`numpy.ndarray`
+ :param iterations: Number of iterations to use.
+ :type iterations: :class:`int`
+ :param extraOptions: Extra options to use during reconstruction (i.e. for cfg['option']).
+ :type extraOptions: :class:`dict`
+ """
+ self.__checkArray(s, self.sshape)
+ sid = self.data_mod.link('-sino',self.pg,s)
+ v = np.zeros(self.vshape,dtype=np.float32)
+ vid = self.data_mod.link('-vol',self.vg,v)
+ cfg = creators.astra_dict(method)
+ cfg['ProjectionDataId'] = sid
+ cfg['ReconstructionDataId'] = vid
+ cfg['ProjectorId'] = self.proj_id
+ cfg['option'] = extraOptions
+ alg_id = algorithm.create(cfg)
+ algorithm.run(alg_id,iterations)
+ algorithm.delete(alg_id)
+ self.data_mod.delete([vid,sid])
+ return v
+
+class OpTomoTranspose(scipy.sparse.linalg.LinearOperator):
+ """This object provides the transpose operation (``.T``) of the OpTomo object.
+
+ Do not use directly, since it can be accessed as member ``.T`` of
+ an :class:`OpTomo` object.
+ """
+ def __init__(self,parent):
+ self.parent = parent
+ self.dtype = np.float32
+ self.shape = (parent.shape[1], parent.shape[0])
+
+ def _matvec(self, s):
+ return self.parent.rmatvec(s)
+
+ def rmatvec(self, v):
+ return self.parent.matvec(v)
+
+ def __mul__(self,s):
+ # Catch the case of a backprojection of 2D/3D data
+ if isinstance(s, np.ndarray) and s.shape==self.parent.sshape:
+ return self._matvec(s)
+ return scipy.sparse.linalg.LinearOperator.__mul__(self, s)