summaryrefslogtreecommitdiffstats
path: root/samples
diff options
context:
space:
mode:
Diffstat (limited to 'samples')
-rw-r--r--samples/python/s017_OpTomo.py61
1 files changed, 61 insertions, 0 deletions
diff --git a/samples/python/s017_OpTomo.py b/samples/python/s017_OpTomo.py
new file mode 100644
index 0000000..967fa64
--- /dev/null
+++ b/samples/python/s017_OpTomo.py
@@ -0,0 +1,61 @@
+#-----------------------------------------------------------------------
+#Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam
+#
+#Author: Daniel M. Pelt
+#Contact: D.M.Pelt@cwi.nl
+#Website: http://dmpelt.github.io/pyastratoolbox/
+#
+#
+#This file is part of the Python interface to the
+#All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
+#
+#The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify
+#it under the terms of the GNU General Public License as published by
+#the Free Software Foundation, either version 3 of the License, or
+#(at your option) any later version.
+#
+#The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful,
+#but WITHOUT ANY WARRANTY; without even the implied warranty of
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+#GNU General Public License for more details.
+#
+#You should have received a copy of the GNU General Public License
+#along with the Python interface to the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+#
+#-----------------------------------------------------------------------
+
+import astra
+import numpy as np
+import scipy.sparse.linalg
+
+vol_geom = astra.create_vol_geom(256, 256)
+proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180,False))
+
+# As before, create a sinogram from a phantom
+import scipy.io
+P = scipy.io.loadmat('phantom.mat')['phantom256']
+proj_id = astra.create_projector('cuda',proj_geom,vol_geom)
+
+# construct the OpTomo object
+W = astra.OpTomo(proj_id)
+
+sinogram = W * P
+sinogram = sinogram.reshape([180, 384])
+
+import pylab
+pylab.gray()
+pylab.figure(1)
+pylab.imshow(P)
+pylab.figure(2)
+pylab.imshow(sinogram)
+
+# Run the lsqr linear solver
+output = scipy.sparse.linalg.lsqr(W, sinogram.flatten(), iter_lim=150)
+rec = output[0].reshape([256, 256])
+
+pylab.figure(3)
+pylab.imshow(rec)
+pylab.show()
+
+# Clean up.
+astra.projector.delete(proj_id)