From 3cae1d138c53a3fd042de3d2c9d9a07cf0650e0f Mon Sep 17 00:00:00 2001 From: "Daniel M. Pelt" Date: Tue, 24 Feb 2015 12:35:45 +0100 Subject: Added Python interface --- samples/python/s010_supersampling.py | 85 ++++++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) create mode 100644 samples/python/s010_supersampling.py (limited to 'samples/python/s010_supersampling.py') diff --git a/samples/python/s010_supersampling.py b/samples/python/s010_supersampling.py new file mode 100644 index 0000000..1a337bc --- /dev/null +++ b/samples/python/s010_supersampling.py @@ -0,0 +1,85 @@ +#----------------------------------------------------------------------- +#Copyright 2013 Centrum Wiskunde & Informatica, Amsterdam +# +#Author: Daniel M. Pelt +#Contact: D.M.Pelt@cwi.nl +#Website: http://dmpelt.github.io/pyastratoolbox/ +# +# +#This file is part of the Python interface to the +#All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). +# +#The Python interface to the ASTRA Toolbox is free software: you can redistribute it and/or modify +#it under the terms of the GNU General Public License as published by +#the Free Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +#The Python interface to the ASTRA Toolbox is distributed in the hope that it will be useful, +#but WITHOUT ANY WARRANTY; without even the implied warranty of +#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +#GNU General Public License for more details. +# +#You should have received a copy of the GNU General Public License +#along with the Python interface to the ASTRA Toolbox. If not, see . +# +#----------------------------------------------------------------------- + +import astra +import numpy as np + +vol_geom = astra.create_vol_geom(256, 256) +proj_geom = astra.create_proj_geom('parallel', 3.0, 128, np.linspace(0,np.pi,180,False)) +import scipy.io +P = scipy.io.loadmat('phantom.mat')['phantom256'] + +# Because the astra.create_sino method does not have support for +# all possible algorithm options, we manually create a sinogram +phantom_id = astra.data2d.create('-vol', vol_geom, P) +sinogram_id = astra.data2d.create('-sino', proj_geom) +cfg = astra.astra_dict('FP_CUDA') +cfg['VolumeDataId'] = phantom_id +cfg['ProjectionDataId'] = sinogram_id + +# Set up 3 rays per detector element +cfg['option'] = {} +cfg['option']['DetectorSuperSampling'] = 3 + +alg_id = astra.algorithm.create(cfg) +astra.algorithm.run(alg_id) +astra.algorithm.delete(alg_id) +astra.data2d.delete(phantom_id) + +sinogram3 = astra.data2d.get(sinogram_id) + +import pylab +pylab.gray() +pylab.figure(1) +pylab.imshow(P) +pylab.figure(2) +pylab.imshow(sinogram3) + +# Create a reconstruction, also using supersampling +rec_id = astra.data2d.create('-vol', vol_geom) +cfg = astra.astra_dict('SIRT_CUDA') +cfg['ReconstructionDataId'] = rec_id +cfg['ProjectionDataId'] = sinogram_id +# Set up 3 rays per detector element +cfg['option'] = {} +cfg['option']['DetectorSuperSampling'] = 3 + +# There is also an option for supersampling during the backprojection step. +# This should be used if your detector pixels are smaller than the voxels. + +# Set up 2 rays per image pixel dimension, for 4 rays total per image pixel. +# cfg['option']['PixelSuperSampling'] = 2 + + +alg_id = astra.algorithm.create(cfg) +astra.algorithm.run(alg_id, 150) +astra.algorithm.delete(alg_id) + +rec = astra.data2d.get(rec_id) +pylab.figure(3) +pylab.imshow(rec) +pylab.show() + -- cgit v1.2.3