/*
-----------------------------------------------------------------------
Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp
2014-2016, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include
#include
#include "util.h"
#include "par_fp.h"
#include "fan_fp.h"
#include "par_bp.h"
#include "fan_bp.h"
#include "arith.h"
#include "astra.h"
#include "fft.h"
#include
#include
#include "../../include/astra/VolumeGeometry2D.h"
#include "../../include/astra/ParallelProjectionGeometry2D.h"
#include "../../include/astra/FanFlatProjectionGeometry2D.h"
#include "../../include/astra/FanFlatVecProjectionGeometry2D.h"
#include "../../include/astra/Logging.h"
// For fan beam FBP weighting
#include "../3d/fdk.h"
using namespace astraCUDA;
using namespace std;
namespace astra {
enum CUDAProjectionType {
PROJ_PARALLEL,
PROJ_FAN
};
class AstraFBP_internal {
public:
SDimensions dims;
float* angles;
float* TOffsets;
astraCUDA::SFanProjection* fanProjections;
float fOriginSourceDistance;
float fOriginDetectorDistance;
float fPixelSize;
bool bFanBeam;
bool bShortScan;
bool initialized;
bool setStartReconstruction;
float* D_sinoData;
unsigned int sinoPitch;
float* D_volumeData;
unsigned int volumePitch;
cufftComplex * m_pDevFilter;
};
AstraFBP::AstraFBP()
{
pData = new AstraFBP_internal();
pData->angles = 0;
pData->fanProjections = 0;
pData->TOffsets = 0;
pData->D_sinoData = 0;
pData->D_volumeData = 0;
pData->dims.iVolWidth = 0;
pData->dims.iProjAngles = 0;
pData->dims.fDetScale = 1.0f;
pData->dims.iRaysPerDet = 1;
pData->dims.iRaysPerPixelDim = 1;
pData->initialized = false;
pData->setStartReconstruction = false;
pData->m_pDevFilter = NULL;
}
AstraFBP::~AstraFBP()
{
delete[] pData->angles;
pData->angles = 0;
delete[] pData->TOffsets;
pData->TOffsets = 0;
delete[] pData->fanProjections;
pData->fanProjections = 0;
cudaFree(pData->D_sinoData);
pData->D_sinoData = 0;
cudaFree(pData->D_volumeData);
pData->D_volumeData = 0;
if(pData->m_pDevFilter != NULL)
{
freeComplexOnDevice(pData->m_pDevFilter);
pData->m_pDevFilter = NULL;
}
delete pData;
pData = 0;
}
bool AstraFBP::setReconstructionGeometry(unsigned int iVolWidth,
unsigned int iVolHeight,
float fPixelSize)
{
if (pData->initialized)
return false;
pData->dims.iVolWidth = iVolWidth;
pData->dims.iVolHeight = iVolHeight;
pData->fPixelSize = fPixelSize;
return (iVolWidth > 0 && iVolHeight > 0 && fPixelSize > 0.0f);
}
bool AstraFBP::setProjectionGeometry(unsigned int iProjAngles,
unsigned int iProjDets,
const float* pfAngles,
float fDetSize)
{
if (pData->initialized)
return false;
pData->dims.iProjAngles = iProjAngles;
pData->dims.iProjDets = iProjDets;
pData->dims.fDetScale = fDetSize / pData->fPixelSize;
if (iProjAngles == 0 || iProjDets == 0 || pfAngles == 0)
return false;
pData->angles = new float[iProjAngles];
memcpy(pData->angles, pfAngles, iProjAngles * sizeof(pfAngles[0]));
pData->bFanBeam = false;
return true;
}
bool AstraFBP::setFanGeometry(unsigned int iProjAngles,
unsigned int iProjDets,
const astraCUDA::SFanProjection *fanProjs,
const float* pfAngles,
float fOriginSourceDistance,
float fOriginDetectorDistance,
float fDetSize,
bool bShortScan)
{
// Slightly abusing setProjectionGeometry for this...
if (!setProjectionGeometry(iProjAngles, iProjDets, pfAngles, fDetSize))
return false;
pData->fOriginSourceDistance = fOriginSourceDistance;
pData->fOriginDetectorDistance = fOriginDetectorDistance;
pData->fanProjections = new astraCUDA::SFanProjection[iProjAngles];
memcpy(pData->fanProjections, fanProjs, iProjAngles * sizeof(fanProjs[0]));
pData->bFanBeam = true;
pData->bShortScan = bShortScan;
return true;
}
bool AstraFBP::setPixelSuperSampling(unsigned int iPixelSuperSampling)
{
if (pData->initialized)
return false;
if (iPixelSuperSampling == 0)
return false;
pData->dims.iRaysPerPixelDim = iPixelSuperSampling;
return true;
}
bool AstraFBP::setTOffsets(const float* pfTOffsets)
{
if (pData->initialized)
return false;
if (pfTOffsets == 0)
return false;
pData->TOffsets = new float[pData->dims.iProjAngles];
memcpy(pData->TOffsets, pfTOffsets, pData->dims.iProjAngles * sizeof(pfTOffsets[0]));
return true;
}
bool AstraFBP::init(int iGPUIndex)
{
if (pData->initialized)
{
return false;
}
if (pData->dims.iProjAngles == 0 || pData->dims.iVolWidth == 0)
{
return false;
}
if (iGPUIndex != -1) {
cudaSetDevice(iGPUIndex);
cudaError_t err = cudaGetLastError();
// Ignore errors caused by calling cudaSetDevice multiple times
if (err != cudaSuccess && err != cudaErrorSetOnActiveProcess)
{
return false;
}
}
bool ok = allocateVolumeData(pData->D_volumeData, pData->volumePitch, pData->dims);
if (!ok)
{
return false;
}
ok = allocateProjectionData(pData->D_sinoData, pData->sinoPitch, pData->dims);
if (!ok)
{
cudaFree(pData->D_volumeData);
pData->D_volumeData = 0;
return false;
}
pData->initialized = true;
return true;
}
bool AstraFBP::setSinogram(const float* pfSinogram,
unsigned int iSinogramPitch)
{
if (!pData->initialized)
return false;
if (!pfSinogram)
return false;
bool ok = copySinogramToDevice(pfSinogram, iSinogramPitch,
pData->dims,
pData->D_sinoData, pData->sinoPitch);
if (!ok)
return false;
// rescale sinogram to adjust for pixel size
processSino(pData->D_sinoData,
1.0f/(pData->fPixelSize*pData->fPixelSize),
pData->sinoPitch, pData->dims);
pData->setStartReconstruction = false;
return true;
}
static int calcNextPowerOfTwo(int _iValue)
{
int iOutput = 1;
while(iOutput < _iValue)
{
iOutput *= 2;
}
return iOutput;
}
bool AstraFBP::run()
{
if (!pData->initialized)
{
return false;
}
zeroVolumeData(pData->D_volumeData, pData->volumePitch, pData->dims);
bool ok = false;
if (pData->bFanBeam) {
// Call FDK_PreWeight to handle fan beam geometry. We treat
// this as a cone beam setup of a single slice:
// TODO: TOffsets affects this preweighting...
// We create a fake cudaPitchedPtr
cudaPitchedPtr tmp;
tmp.ptr = pData->D_sinoData;
tmp.pitch = pData->sinoPitch * sizeof(float);
tmp.xsize = pData->dims.iProjDets;
tmp.ysize = pData->dims.iProjAngles;
// and a fake Dimensions3D
astraCUDA3d::SDimensions3D dims3d;
dims3d.iVolX = pData->dims.iVolWidth;
dims3d.iVolY = pData->dims.iVolHeight;
dims3d.iVolZ = 1;
dims3d.iProjAngles = pData->dims.iProjAngles;
dims3d.iProjU = pData->dims.iProjDets;
dims3d.iProjV = 1;
astraCUDA3d::FDK_PreWeight(tmp, pData->fOriginSourceDistance,
pData->fOriginDetectorDistance, 0.0f,
pData->dims.fDetScale, 1.0f, // TODO: Are these correct?
pData->bShortScan, dims3d, pData->angles);
}
if (pData->m_pDevFilter) {
int iFFTRealDetCount = calcNextPowerOfTwo(2 * pData->dims.iProjDets);
int iFFTFourDetCount = calcFFTFourSize(iFFTRealDetCount);
cufftComplex * pDevComplexSinogram = NULL;
allocateComplexOnDevice(pData->dims.iProjAngles, iFFTFourDetCount, &pDevComplexSinogram);
runCudaFFT(pData->dims.iProjAngles, pData->D_sinoData, pData->sinoPitch, pData->dims.iProjDets, iFFTRealDetCount, iFFTFourDetCount, pDevComplexSinogram);
applyFilter(pData->dims.iProjAngles, iFFTFourDetCount, pDevComplexSinogram, pData->m_pDevFilter);
runCudaIFFT(pData->dims.iProjAngles, pDevComplexSinogram, pData->D_sinoData, pData->sinoPitch, pData->dims.iProjDets, iFFTRealDetCount, iFFTFourDetCount);
freeComplexOnDevice(pDevComplexSinogram);
}
float fOutputScale = (M_PI / 2.0f) / (float)pData->dims.iProjAngles;
if (pData->bFanBeam) {
ok = FanBP_FBPWeighted(pData->D_volumeData, pData->volumePitch, pData->D_sinoData, pData->sinoPitch, pData->dims, pData->fanProjections, fOutputScale);
} else {
ok = BP(pData->D_volumeData, pData->volumePitch, pData->D_sinoData, pData->sinoPitch, pData->dims, pData->angles, pData->TOffsets, fOutputScale);
}
if(!ok)
{
return false;
}
return true;
}
bool AstraFBP::getReconstruction(float* pfReconstruction, unsigned int iReconstructionPitch) const
{
if (!pData->initialized)
return false;
bool ok = copyVolumeFromDevice(pfReconstruction, iReconstructionPitch,
pData->dims,
pData->D_volumeData, pData->volumePitch);
if (!ok)
return false;
return true;
}
int AstraFBP::calcFourierFilterSize(int _iDetectorCount)
{
int iFFTRealDetCount = calcNextPowerOfTwo(2 * _iDetectorCount);
int iFreqBinCount = calcFFTFourSize(iFFTRealDetCount);
// CHECKME: Matlab makes this at least 64. Do we also need to?
return iFreqBinCount;
}
bool AstraFBP::setFilter(E_FBPFILTER _eFilter, const float * _pfHostFilter /* = NULL */, int _iFilterWidth /* = 0 */, float _fD /* = 1.0f */, float _fFilterParameter /* = -1.0f */)
{
if(pData->m_pDevFilter != 0)
{
freeComplexOnDevice(pData->m_pDevFilter);
pData->m_pDevFilter = 0;
}
if (_eFilter == FILTER_NONE)
return true; // leave pData->m_pDevFilter set to 0
int iFFTRealDetCount = calcNextPowerOfTwo(2 * pData->dims.iProjDets);
int iFreqBinCount = calcFFTFourSize(iFFTRealDetCount);
cufftComplex * pHostFilter = new cufftComplex[pData->dims.iProjAngles * iFreqBinCount];
memset(pHostFilter, 0, sizeof(cufftComplex) * pData->dims.iProjAngles * iFreqBinCount);
allocateComplexOnDevice(pData->dims.iProjAngles, iFreqBinCount, &(pData->m_pDevFilter));
switch(_eFilter)
{
case FILTER_NONE:
// handled above
break;
case FILTER_RAMLAK:
case FILTER_SHEPPLOGAN:
case FILTER_COSINE:
case FILTER_HAMMING:
case FILTER_HANN:
case FILTER_TUKEY:
case FILTER_LANCZOS:
case FILTER_TRIANGULAR:
case FILTER_GAUSSIAN:
case FILTER_BARTLETTHANN:
case FILTER_BLACKMAN:
case FILTER_NUTTALL:
case FILTER_BLACKMANHARRIS:
case FILTER_BLACKMANNUTTALL:
case FILTER_FLATTOP:
case FILTER_PARZEN:
{
genFilter(_eFilter, _fD, pData->dims.iProjAngles, pHostFilter, iFFTRealDetCount, iFreqBinCount, _fFilterParameter);
uploadComplexArrayToDevice(pData->dims.iProjAngles, iFreqBinCount, pHostFilter, pData->m_pDevFilter);
break;
}
case FILTER_PROJECTION:
{
// make sure the offered filter has the correct size
assert(_iFilterWidth == iFreqBinCount);
for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++)
{
float fValue = _pfHostFilter[iFreqBinIndex];
for(int iProjectionIndex = 0; iProjectionIndex < (int)pData->dims.iProjAngles; iProjectionIndex++)
{
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].x = fValue;
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].y = 0.0f;
}
}
uploadComplexArrayToDevice(pData->dims.iProjAngles, iFreqBinCount, pHostFilter, pData->m_pDevFilter);
break;
}
case FILTER_SINOGRAM:
{
// make sure the offered filter has the correct size
assert(_iFilterWidth == iFreqBinCount);
for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++)
{
for(int iProjectionIndex = 0; iProjectionIndex < (int)pData->dims.iProjAngles; iProjectionIndex++)
{
float fValue = _pfHostFilter[iFreqBinIndex + iProjectionIndex * _iFilterWidth];
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].x = fValue;
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].y = 0.0f;
}
}
uploadComplexArrayToDevice(pData->dims.iProjAngles, iFreqBinCount, pHostFilter, pData->m_pDevFilter);
break;
}
case FILTER_RPROJECTION:
{
int iProjectionCount = pData->dims.iProjAngles;
int iRealFilterElementCount = iProjectionCount * iFFTRealDetCount;
float * pfHostRealFilter = new float[iRealFilterElementCount];
memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount);
int iUsedFilterWidth = min(_iFilterWidth, iFFTRealDetCount);
int iStartFilterIndex = (_iFilterWidth - iUsedFilterWidth) / 2;
int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth;
int iFilterShiftSize = _iFilterWidth / 2;
for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++)
{
int iFFTInFilterIndex = (iDetectorIndex + iFFTRealDetCount - iFilterShiftSize) % iFFTRealDetCount;
float fValue = _pfHostFilter[iDetectorIndex];
for(int iProjectionIndex = 0; iProjectionIndex < (int)pData->dims.iProjAngles; iProjectionIndex++)
{
pfHostRealFilter[iFFTInFilterIndex + iProjectionIndex * iFFTRealDetCount] = fValue;
}
}
float* pfDevRealFilter = NULL;
cudaMalloc((void **)&pfDevRealFilter, sizeof(float) * iRealFilterElementCount); // TODO: check for errors
cudaMemcpy(pfDevRealFilter, pfHostRealFilter, sizeof(float) * iRealFilterElementCount, cudaMemcpyHostToDevice);
delete[] pfHostRealFilter;
runCudaFFT(iProjectionCount, pfDevRealFilter, iFFTRealDetCount, iFFTRealDetCount, iFFTRealDetCount, iFreqBinCount, pData->m_pDevFilter);
cudaFree(pfDevRealFilter);
break;
}
case FILTER_RSINOGRAM:
{
int iProjectionCount = pData->dims.iProjAngles;
int iRealFilterElementCount = iProjectionCount * iFFTRealDetCount;
float* pfHostRealFilter = new float[iRealFilterElementCount];
memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount);
int iUsedFilterWidth = min(_iFilterWidth, iFFTRealDetCount);
int iStartFilterIndex = (_iFilterWidth - iUsedFilterWidth) / 2;
int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth;
int iFilterShiftSize = _iFilterWidth / 2;
for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++)
{
int iFFTInFilterIndex = (iDetectorIndex + iFFTRealDetCount - iFilterShiftSize) % iFFTRealDetCount;
for(int iProjectionIndex = 0; iProjectionIndex < (int)pData->dims.iProjAngles; iProjectionIndex++)
{
float fValue = _pfHostFilter[iDetectorIndex + iProjectionIndex * _iFilterWidth];
pfHostRealFilter[iFFTInFilterIndex + iProjectionIndex * iFFTRealDetCount] = fValue;
}
}
float* pfDevRealFilter = NULL;
cudaMalloc((void **)&pfDevRealFilter, sizeof(float) * iRealFilterElementCount); // TODO: check for errors
cudaMemcpy(pfDevRealFilter, pfHostRealFilter, sizeof(float) * iRealFilterElementCount, cudaMemcpyHostToDevice);
delete[] pfHostRealFilter;
runCudaFFT(iProjectionCount, pfDevRealFilter, iFFTRealDetCount, iFFTRealDetCount, iFFTRealDetCount, iFreqBinCount, pData->m_pDevFilter);
cudaFree(pfDevRealFilter);
break;
}
default:
{
ASTRA_ERROR("AstraFBP::setFilter: Unknown filter type requested");
delete [] pHostFilter;
return false;
}
}
delete [] pHostFilter;
return true;
}
BPalgo::BPalgo()
{
}
BPalgo::~BPalgo()
{
}
bool BPalgo::init()
{
return true;
}
bool BPalgo::iterate(unsigned int)
{
// TODO: This zeroVolume makes an earlier memcpy of D_volumeData redundant
zeroVolumeData(D_volumeData, volumePitch, dims);
callBP(D_volumeData, volumePitch, D_sinoData, sinoPitch, 1.0f);
return true;
}
float BPalgo::computeDiffNorm()
{
float *D_projData;
unsigned int projPitch;
allocateProjectionData(D_projData, projPitch, dims);
duplicateProjectionData(D_projData, D_sinoData, sinoPitch, dims);
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
cudaFree(D_projData);
return sqrt(s);
}
bool astraCudaFP(const float* pfVolume, float* pfSinogram,
unsigned int iVolWidth, unsigned int iVolHeight,
unsigned int iProjAngles, unsigned int iProjDets,
const float *pfAngles, const float *pfOffsets,
float fDetSize, unsigned int iDetSuperSampling,
float fOutputScale, int iGPUIndex)
{
SDimensions dims;
if (iProjAngles == 0 || iProjDets == 0 || pfAngles == 0)
return false;
dims.iProjAngles = iProjAngles;
dims.iProjDets = iProjDets;
dims.fDetScale = fDetSize;
if (iDetSuperSampling == 0)
return false;
dims.iRaysPerDet = iDetSuperSampling;
if (iVolWidth <= 0 || iVolHeight <= 0)
return false;
dims.iVolWidth = iVolWidth;
dims.iVolHeight = iVolHeight;
if (iGPUIndex != -1) {
cudaSetDevice(iGPUIndex);
cudaError_t err = cudaGetLastError();
// Ignore errors caused by calling cudaSetDevice multiple times
if (err != cudaSuccess && err != cudaErrorSetOnActiveProcess)
return false;
}
bool ok;
float* D_volumeData;
unsigned int volumePitch;
ok = allocateVolumeData(D_volumeData, volumePitch, dims);
if (!ok)
return false;
float* D_sinoData;
unsigned int sinoPitch;
ok = allocateProjectionData(D_sinoData, sinoPitch, dims);
if (!ok) {
cudaFree(D_volumeData);
return false;
}
ok = copyVolumeToDevice(pfVolume, dims.iVolWidth,
dims,
D_volumeData, volumePitch);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
zeroProjectionData(D_sinoData, sinoPitch, dims);
ok = FP(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, pfAngles, pfOffsets, fOutputScale);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
ok = copySinogramFromDevice(pfSinogram, dims.iProjDets,
dims,
D_sinoData, sinoPitch);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return true;
}
bool astraCudaFanFP(const float* pfVolume, float* pfSinogram,
unsigned int iVolWidth, unsigned int iVolHeight,
unsigned int iProjAngles, unsigned int iProjDets,
const SFanProjection *pAngles,
unsigned int iDetSuperSampling, float fOutputScale,
int iGPUIndex)
{
SDimensions dims;
if (iProjAngles == 0 || iProjDets == 0 || pAngles == 0)
return false;
dims.iProjAngles = iProjAngles;
dims.iProjDets = iProjDets;
dims.fDetScale = 1.0f; // TODO?
if (iDetSuperSampling == 0)
return false;
dims.iRaysPerDet = iDetSuperSampling;
if (iVolWidth <= 0 || iVolHeight <= 0)
return false;
dims.iVolWidth = iVolWidth;
dims.iVolHeight = iVolHeight;
if (iGPUIndex != -1) {
cudaSetDevice(iGPUIndex);
cudaError_t err = cudaGetLastError();
// Ignore errors caused by calling cudaSetDevice multiple times
if (err != cudaSuccess && err != cudaErrorSetOnActiveProcess)
return false;
}
bool ok;
float* D_volumeData;
unsigned int volumePitch;
ok = allocateVolumeData(D_volumeData, volumePitch, dims);
if (!ok)
return false;
float* D_sinoData;
unsigned int sinoPitch;
ok = allocateProjectionData(D_sinoData, sinoPitch, dims);
if (!ok) {
cudaFree(D_volumeData);
return false;
}
ok = copyVolumeToDevice(pfVolume, dims.iVolWidth,
dims,
D_volumeData, volumePitch);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
zeroProjectionData(D_sinoData, sinoPitch, dims);
ok = FanFP(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, pAngles, fOutputScale);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
ok = copySinogramFromDevice(pfSinogram, dims.iProjDets,
dims,
D_sinoData, sinoPitch);
if (!ok) {
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return false;
}
cudaFree(D_volumeData);
cudaFree(D_sinoData);
return true;
}
bool convertAstraGeometry(const CVolumeGeometry2D* pVolGeom,
const CParallelProjectionGeometry2D* pProjGeom,
float*& detectorOffsets, float*& projectionAngles,
float& detSize, float& outputScale)
{
assert(pVolGeom);
assert(pProjGeom);
assert(pProjGeom->getProjectionAngles());
const float EPS = 0.00001f;
int nth = pProjGeom->getProjectionAngleCount();
// Check if pixels are square
if (abs(pVolGeom->getPixelLengthX() - pVolGeom->getPixelLengthY()) > EPS)
return false;
// Scale volume pixels to 1x1
detSize = pProjGeom->getDetectorWidth() / pVolGeom->getPixelLengthX();
// Copy angles
float *angles = new float[nth];
for (int i = 0; i < nth; ++i)
angles[i] = pProjGeom->getProjectionAngles()[i];
projectionAngles = angles;
// Check if we need to translate
bool offCenter = false;
if (abs(pVolGeom->getWindowMinX() + pVolGeom->getWindowMaxX()) > EPS ||
abs(pVolGeom->getWindowMinY() + pVolGeom->getWindowMaxY()) > EPS)
{
offCenter = true;
}
// If there are existing detector offsets, or if we need to translate,
// we need to return offsets
if (pProjGeom->getExtraDetectorOffset() || offCenter)
{
float* offset = new float[nth];
if (pProjGeom->getExtraDetectorOffset()) {
for (int i = 0; i < nth; ++i)
offset[i] = pProjGeom->getExtraDetectorOffset()[i];
} else {
for (int i = 0; i < nth; ++i)
offset[i] = 0.0f;
}
if (offCenter) {
float dx = (pVolGeom->getWindowMinX() + pVolGeom->getWindowMaxX()) / 2;
float dy = (pVolGeom->getWindowMinY() + pVolGeom->getWindowMaxY()) / 2;
// CHECKME: Is d in pixels or in units?
for (int i = 0; i < nth; ++i) {
float d = dx * cos(angles[i]) + dy * sin(angles[i]);
offset[i] += d;
}
}
// CHECKME: Order of scaling and translation
// Scale volume pixels to 1x1
for (int i = 0; i < nth; ++i) {
//offset[i] /= pVolGeom->getPixelLengthX();
//offset[i] *= detSize;
}
detectorOffsets = offset;
} else {
detectorOffsets = 0;
}
outputScale = pVolGeom->getPixelLengthX();
outputScale *= outputScale;
return true;
}
static void convertAstraGeometry_internal(const CVolumeGeometry2D* pVolGeom,
unsigned int iProjectionAngleCount,
astraCUDA::SFanProjection*& pProjs,
float& outputScale)
{
// Translate
float dx = (pVolGeom->getWindowMinX() + pVolGeom->getWindowMaxX()) / 2;
float dy = (pVolGeom->getWindowMinY() + pVolGeom->getWindowMaxY()) / 2;
for (int i = 0; i < iProjectionAngleCount; ++i) {
pProjs[i].fSrcX -= dx;
pProjs[i].fSrcY -= dy;
pProjs[i].fDetSX -= dx;
pProjs[i].fDetSY -= dy;
}
// CHECKME: Order of scaling and translation
// Scale
float factor = 1.0f / pVolGeom->getPixelLengthX();
for (int i = 0; i < iProjectionAngleCount; ++i) {
pProjs[i].fSrcX *= factor;
pProjs[i].fSrcY *= factor;
pProjs[i].fDetSX *= factor;
pProjs[i].fDetSY *= factor;
pProjs[i].fDetUX *= factor;
pProjs[i].fDetUY *= factor;
}
// CHECKME: Check factor
outputScale = pVolGeom->getPixelLengthX();
// outputScale *= outputScale;
}
bool convertAstraGeometry(const CVolumeGeometry2D* pVolGeom,
const CFanFlatProjectionGeometry2D* pProjGeom,
astraCUDA::SFanProjection*& pProjs,
float& outputScale)
{
assert(pVolGeom);
assert(pProjGeom);
assert(pProjGeom->getProjectionAngles());
const float EPS = 0.00001f;
int nth = pProjGeom->getProjectionAngleCount();
// Check if pixels are square
if (abs(pVolGeom->getPixelLengthX() - pVolGeom->getPixelLengthY()) > EPS)
return false;
// TODO: Deprecate this.
// if (pProjGeom->getExtraDetectorOffset())
// return false;
float fOriginSourceDistance = pProjGeom->getOriginSourceDistance();
float fOriginDetectorDistance = pProjGeom->getOriginDetectorDistance();
float fDetSize = pProjGeom->getDetectorWidth();
const float *pfAngles = pProjGeom->getProjectionAngles();
pProjs = new SFanProjection[nth];
float fSrcX0 = 0.0f;
float fSrcY0 = -fOriginSourceDistance;
float fDetUX0 = fDetSize;
float fDetUY0 = 0.0f;
float fDetSX0 = pProjGeom->getDetectorCount() * fDetUX0 / -2.0f;
float fDetSY0 = fOriginDetectorDistance;
#define ROTATE0(name,i,alpha) do { pProjs[i].f##name##X = f##name##X0 * cos(alpha) - f##name##Y0 * sin(alpha); pProjs[i].f##name##Y = f##name##X0 * sin(alpha) + f##name##Y0 * cos(alpha); } while(0)
for (int i = 0; i < nth; ++i) {
ROTATE0(Src, i, pfAngles[i]);
ROTATE0(DetS, i, pfAngles[i]);
ROTATE0(DetU, i, pfAngles[i]);
}
#undef ROTATE0
convertAstraGeometry_internal(pVolGeom, nth, pProjs, outputScale);
return true;
}
bool convertAstraGeometry(const CVolumeGeometry2D* pVolGeom,
const CFanFlatVecProjectionGeometry2D* pProjGeom,
astraCUDA::SFanProjection*& pProjs,
float& outputScale)
{
assert(pVolGeom);
assert(pProjGeom);
assert(pProjGeom->getProjectionVectors());
const float EPS = 0.00001f;
int nx = pVolGeom->getGridColCount();
int ny = pVolGeom->getGridRowCount();
int nth = pProjGeom->getProjectionAngleCount();
// Check if pixels are square
if (abs(pVolGeom->getPixelLengthX() - pVolGeom->getPixelLengthY()) > EPS)
return false;
pProjs = new SFanProjection[nth];
// Copy vectors
for (int i = 0; i < nth; ++i)
pProjs[i] = pProjGeom->getProjectionVectors()[i];
convertAstraGeometry_internal(pVolGeom, nth, pProjs, outputScale);
return true;
}
}