/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- */ #include <cstdio> #include <cassert> #include <iostream> #include "util.h" #include "arith.h" #ifdef STANDALONE #include "testutil.h" #endif #define PIXELTRACE typedef texture<float, 2, cudaReadModeElementType> texture2D; static texture2D gT_FanProjTexture; namespace astraCUDA { const unsigned int g_anglesPerBlock = 16; const unsigned int g_blockSliceSize = 32; const unsigned int g_blockSlices = 16; const unsigned int g_MaxAngles = 2560; __constant__ float gC_SrcX[g_MaxAngles]; __constant__ float gC_SrcY[g_MaxAngles]; __constant__ float gC_DetSX[g_MaxAngles]; __constant__ float gC_DetSY[g_MaxAngles]; __constant__ float gC_DetUX[g_MaxAngles]; __constant__ float gC_DetUY[g_MaxAngles]; static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height, cudaTextureAddressMode mode = cudaAddressModeBorder) { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); gT_FanProjTexture.addressMode[0] = mode; gT_FanProjTexture.addressMode[1] = mode; gT_FanProjTexture.filterMode = cudaFilterModeLinear; gT_FanProjTexture.normalized = false; cudaBindTexture2D(0, gT_FanProjTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch); // TODO: error value? return true; } __global__ void devFanBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ); const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f ); float* volData = (float*)D_volData; float fVal = 0.0f; float fA = startAngle + 0.5f; // TODO: Distance correction? for (int angle = startAngle; angle < endAngle; ++angle) { const float fSrcX = gC_SrcX[angle]; const float fSrcY = gC_SrcY[angle]; const float fDetSX = gC_DetSX[angle]; const float fDetSY = gC_DetSY[angle]; const float fDetUX = gC_DetUX[angle]; const float fDetUY = gC_DetUY[angle]; const float fXD = fSrcX - fX; const float fYD = fSrcY - fY; const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX; const float fDen = fDetUX * fYD - fDetUY * fXD; const float fT = fNum / fDen; fVal += tex2D(gT_FanProjTexture, fT, fA); fA += 1.0f; } volData[Y*volPitch+X] += fVal * fOutputScale; } // supersampling version __global__ void devFanBP_SS(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fXb = ( X - 0.5f*dims.iVolWidth + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim); const float fYb = - ( Y - 0.5f*dims.iVolHeight + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim); const float fSubStep = 1.0f/dims.iRaysPerPixelDim; float* volData = (float*)D_volData; fOutputScale /= (dims.iRaysPerPixelDim * dims.iRaysPerPixelDim); float fVal = 0.0f; float fA = startAngle + 0.5f; // TODO: Distance correction? for (int angle = startAngle; angle < endAngle; ++angle) { const float fSrcX = gC_SrcX[angle]; const float fSrcY = gC_SrcY[angle]; const float fDetSX = gC_DetSX[angle]; const float fDetSY = gC_DetSY[angle]; const float fDetUX = gC_DetUX[angle]; const float fDetUY = gC_DetUY[angle]; // TODO: Optimize these loops... float fX = fXb; for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) { float fY = fYb; for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) { const float fXD = fSrcX - fX; const float fYD = fSrcY - fY; const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX; const float fDen = fDetUX * fYD - fDetUY * fXD; const float fT = fNum / fDen; fVal += tex2D(gT_FanProjTexture, fT, fA); fY -= fSubStep; } fX += fSubStep; } fA += 1.0f; } volData[Y*volPitch+X] += fVal * fOutputScale; } // BP specifically for SART. // It includes (free) weighting with voxel weight. // It assumes the proj texture is set up _without_ padding, unlike regular BP. __global__ void devFanBP_SART(float* D_volData, unsigned int volPitch, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ); const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f ); float* volData = (float*)D_volData; // TODO: Distance correction? // TODO: Constant memory vs parameters. const float fSrcX = gC_SrcX[0]; const float fSrcY = gC_SrcY[0]; const float fDetSX = gC_DetSX[0]; const float fDetSY = gC_DetSY[0]; const float fDetUX = gC_DetUX[0]; const float fDetUY = gC_DetUY[0]; const float fXD = fSrcX - fX; const float fYD = fSrcY - fY; const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX; const float fDen = fDetUX * fYD - fDetUY * fXD; const float fT = fNum / fDen; const float fVal = tex2D(gT_FanProjTexture, fT, 0.5f); volData[Y*volPitch+X] += fVal * fOutputScale; } // Weighted BP for use in fan beam FBP // Each pixel/ray is weighted by 1/L^2 where L is the distance to the source. __global__ void devFanBP_FBPWeighted(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ); const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f ); float* volData = (float*)D_volData; float fVal = 0.0f; float fA = startAngle + 0.5f; // TODO: Distance correction? for (int angle = startAngle; angle < endAngle; ++angle) { const float fSrcX = gC_SrcX[angle]; const float fSrcY = gC_SrcY[angle]; const float fDetSX = gC_DetSX[angle]; const float fDetSY = gC_DetSY[angle]; const float fDetUX = gC_DetUX[angle]; const float fDetUY = gC_DetUY[angle]; const float fXD = fSrcX - fX; const float fYD = fSrcY - fY; const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX; const float fDen = fDetUX * fYD - fDetUY * fXD; const float fWeight = fXD*fXD + fYD*fYD; const float fT = fNum / fDen; fVal += tex2D(gT_FanProjTexture, fT, fA) / fWeight; fA += 1.0f; } volData[Y*volPitch+X] += fVal * fOutputScale; } bool FanBP_internal(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float fOutputScale) { assert(dims.iProjAngles <= g_MaxAngles); bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); // transfer angles to constant memory float* tmp = new float[dims.iProjAngles]; #define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0) TRANSFER_TO_CONSTANT(SrcX); TRANSFER_TO_CONSTANT(SrcY); TRANSFER_TO_CONSTANT(DetSX); TRANSFER_TO_CONSTANT(DetSY); TRANSFER_TO_CONSTANT(DetUX); TRANSFER_TO_CONSTANT(DetUY); #undef TRANSFER_TO_CONSTANT delete[] tmp; dim3 dimBlock(g_blockSlices, g_blockSliceSize); dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices, (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize); cudaStream_t stream; cudaStreamCreate(&stream); for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) { if (dims.iRaysPerPixelDim > 1) devFanBP_SS<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale); else devFanBP<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale); } cudaThreadSynchronize(); cudaTextForceKernelsCompletion(); cudaStreamDestroy(stream); return true; } bool FanBP_FBPWeighted_internal(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float fOutputScale) { assert(dims.iProjAngles <= g_MaxAngles); bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); // transfer angles to constant memory float* tmp = new float[dims.iProjAngles]; #define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0) TRANSFER_TO_CONSTANT(SrcX); TRANSFER_TO_CONSTANT(SrcY); TRANSFER_TO_CONSTANT(DetSX); TRANSFER_TO_CONSTANT(DetSY); TRANSFER_TO_CONSTANT(DetUX); TRANSFER_TO_CONSTANT(DetUY); #undef TRANSFER_TO_CONSTANT delete[] tmp; dim3 dimBlock(g_blockSlices, g_blockSliceSize); dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices, (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize); cudaStream_t stream; cudaStreamCreate(&stream); for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) { devFanBP_FBPWeighted<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, dims, fOutputScale); } cudaThreadSynchronize(); cudaTextForceKernelsCompletion(); cudaStreamDestroy(stream); return true; } // D_projData is a pointer to one padded sinogram line bool FanBP_SART(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, unsigned int angle, const SDimensions& dims, const SFanProjection* angles, float fOutputScale) { // only one angle bindProjDataTexture(D_projData, projPitch, dims.iProjDets, 1, cudaAddressModeClamp); // transfer angle to constant memory #define TRANSFER_TO_CONSTANT(name) do { cudaMemcpyToSymbol(gC_##name, &(angles[angle].f##name), sizeof(float), 0, cudaMemcpyHostToDevice); } while (0) TRANSFER_TO_CONSTANT(SrcX); TRANSFER_TO_CONSTANT(SrcY); TRANSFER_TO_CONSTANT(DetSX); TRANSFER_TO_CONSTANT(DetSY); TRANSFER_TO_CONSTANT(DetUX); TRANSFER_TO_CONSTANT(DetUY); #undef TRANSFER_TO_CONSTANT dim3 dimBlock(g_blockSlices, g_blockSliceSize); dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices, (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize); devFanBP_SART<<<dimGrid, dimBlock>>>(D_volumeData, volumePitch, dims, fOutputScale); cudaThreadSynchronize(); cudaTextForceKernelsCompletion(); return true; } bool FanBP(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float fOutputScale) { for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) { SDimensions subdims = dims; unsigned int iEndAngle = iAngle + g_MaxAngles; if (iEndAngle >= dims.iProjAngles) iEndAngle = dims.iProjAngles; subdims.iProjAngles = iEndAngle - iAngle; bool ret; ret = FanBP_internal(D_volumeData, volumePitch, D_projData + iAngle * projPitch, projPitch, subdims, angles + iAngle, fOutputScale); if (!ret) return false; } return true; } bool FanBP_FBPWeighted(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const SFanProjection* angles, float fOutputScale) { for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) { SDimensions subdims = dims; unsigned int iEndAngle = iAngle + g_MaxAngles; if (iEndAngle >= dims.iProjAngles) iEndAngle = dims.iProjAngles; subdims.iProjAngles = iEndAngle - iAngle; bool ret; ret = FanBP_FBPWeighted_internal(D_volumeData, volumePitch, D_projData + iAngle * projPitch, projPitch, subdims, angles + iAngle, fOutputScale); if (!ret) return false; } return true; } } #ifdef STANDALONE using namespace astraCUDA; int main() { float* D_volumeData; float* D_projData; SDimensions dims; dims.iVolWidth = 128; dims.iVolHeight = 128; dims.iProjAngles = 180; dims.iProjDets = 256; dims.fDetScale = 1.0f; dims.iRaysPerDet = 1; unsigned int volumePitch, projPitch; SFanProjection projs[180]; projs[0].fSrcX = 0.0f; projs[0].fSrcY = 1536.0f; projs[0].fDetSX = 128.0f; projs[0].fDetSY = -512.0f; projs[0].fDetUX = -1.0f; projs[0].fDetUY = 0.0f; #define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0) for (int i = 1; i < 180; ++i) { ROTATE0(Src, i, i*2*M_PI/180); ROTATE0(DetS, i, i*2*M_PI/180); ROTATE0(DetU, i, i*2*M_PI/180); } #undef ROTATE0 allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch); printf("pitch: %u\n", volumePitch); allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch); printf("pitch: %u\n", projPitch); unsigned int y, x; float* sino = loadImage("sino.png", y, x); float* img = new float[dims.iVolWidth*dims.iVolHeight]; memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float)); copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch); copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch); FanBP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs, 1.0f); copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch); saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img); return 0; } #endif