/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include
#include "util.h"
#include "arith.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#define PIXELTRACE
typedef texture texture2D;
static texture2D gT_FanProjTexture;
namespace astraCUDA {
const unsigned int g_anglesPerBlock = 16;
const unsigned int g_blockSliceSize = 32;
const unsigned int g_blockSlices = 16;
const unsigned int g_MaxAngles = 2560;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
gT_FanProjTexture.addressMode[0] = cudaAddressModeClamp;
gT_FanProjTexture.addressMode[1] = cudaAddressModeClamp;
gT_FanProjTexture.filterMode = cudaFilterModeLinear;
gT_FanProjTexture.normalized = false;
cudaBindTexture2D(0, gT_FanProjTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch);
// TODO: error value?
return true;
}
__global__ void devFanBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles)
endAngle = dims.iProjAngles;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f );
const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f );
float* volData = (float*)D_volData;
float fVal = 0.0f;
float fA = startAngle + 0.5f;
// TODO: Distance correction?
for (int angle = startAngle; angle < endAngle; ++angle)
{
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fDetSX = gC_DetSX[angle];
const float fDetSY = gC_DetSY[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
const float fXD = fSrcX - fX;
const float fYD = fSrcY - fY;
const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
const float fDen = fDetUX * fYD - fDetUY * fXD;
const float fT = fNum / fDen + 1.0f;
fVal += tex2D(gT_FanProjTexture, fT, fA);
fA += 1.0f;
}
volData[(Y+1)*volPitch+X+1] += fVal;
}
// supersampling version
__global__ void devFanBP_SS(float* D_volData, unsigned int volPitch, unsigned int startAngle, const SDimensions dims)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles)
endAngle = dims.iProjAngles;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fXb = ( X - 0.5f*dims.iVolWidth + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim);
const float fYb = - ( Y - 0.5f*dims.iVolHeight + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim);
const float fSubStep = 1.0f/dims.iRaysPerPixelDim;
float* volData = (float*)D_volData;
float fVal = 0.0f;
float fA = startAngle + 0.5f;
// TODO: Distance correction?
for (int angle = startAngle; angle < endAngle; ++angle)
{
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fDetSX = gC_DetSX[angle];
const float fDetSY = gC_DetSY[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
// TODO: Optimize these loops...
float fX = fXb;
for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) {
float fY = fYb;
for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
const float fXD = fSrcX - fX;
const float fYD = fSrcY - fY;
const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
const float fDen = fDetUX * fYD - fDetUY * fXD;
const float fT = fNum / fDen + 1.0f;
fVal += tex2D(gT_FanProjTexture, fT, fA);
fY -= fSubStep;
}
fX += fSubStep;
}
fA += 1.0f;
}
volData[(Y+1)*volPitch+X+1] += fVal / (dims.iRaysPerPixelDim * dims.iRaysPerPixelDim);
}
// BP specifically for SART.
// It includes (free) weighting with voxel weight.
// It assumes the proj texture is set up _without_ padding, unlike regular BP.
__global__ void devFanBP_SART(float* D_volData, unsigned int volPitch, const SDimensions dims)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f );
const float fY = - ( Y - 0.5f*dims.iVolHeight + 0.5f );
float* volData = (float*)D_volData;
// TODO: Distance correction?
// TODO: Constant memory vs parameters.
const float fSrcX = gC_SrcX[0];
const float fSrcY = gC_SrcY[0];
const float fDetSX = gC_DetSX[0];
const float fDetSY = gC_DetSY[0];
const float fDetUX = gC_DetUX[0];
const float fDetUY = gC_DetUY[0];
const float fXD = fSrcX - fX;
const float fYD = fSrcY - fY;
const float fNum = fDetSY * fXD - fDetSX * fYD + fX*fSrcY - fY*fSrcX;
const float fDen = fDetUX * fYD - fDetUY * fXD;
const float fT = fNum / fDen;
const float fVal = tex2D(gT_FanProjTexture, fT, 0.5f);
volData[(Y+1)*volPitch+X+1] += fVal;
}
bool FanBP(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const SFanProjection* angles)
{
// TODO: process angles block by block
assert(dims.iProjAngles <= g_MaxAngles);
bindProjDataTexture(D_projData, projPitch, dims.iProjDets+2, dims.iProjAngles);
// transfer angles to constant memory
float* tmp = new float[dims.iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
(dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
cudaStream_t stream;
cudaStreamCreate(&stream);
for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) {
if (dims.iRaysPerPixelDim > 1)
devFanBP_SS<<>>(D_volumeData, volumePitch, i, dims);
else
devFanBP<<>>(D_volumeData, volumePitch, i, dims);
}
cudaThreadSynchronize();
cudaTextForceKernelsCompletion();
cudaStreamDestroy(stream);
return true;
}
// D_projData is a pointer to one padded sinogram line
bool FanBP_SART(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
unsigned int angle,
const SDimensions& dims, const SFanProjection* angles)
{
// only one angle
bindProjDataTexture(D_projData, projPitch, dims.iProjDets, 1);
// transfer angle to constant memory
#define TRANSFER_TO_CONSTANT(name) do { cudaMemcpyToSymbol(gC_##name, &(angles[angle].f##name), sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
#undef TRANSFER_TO_CONSTANT
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
(dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
devFanBP_SART<<>>(D_volumeData, volumePitch, dims);
cudaThreadSynchronize();
cudaTextForceKernelsCompletion();
return true;
}
}
#ifdef STANDALONE
using namespace astraCUDA;
int main()
{
float* D_volumeData;
float* D_projData;
SDimensions dims;
dims.iVolWidth = 128;
dims.iVolHeight = 128;
dims.iProjAngles = 180;
dims.iProjDets = 256;
dims.fDetScale = 1.0f;
dims.iRaysPerDet = 1;
unsigned int volumePitch, projPitch;
SFanProjection projs[180];
projs[0].fSrcX = 0.0f;
projs[0].fSrcY = 1536.0f;
projs[0].fDetSX = 128.0f;
projs[0].fDetSY = -512.0f;
projs[0].fDetUX = -1.0f;
projs[0].fDetUY = 0.0f;
#define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 180; ++i) {
ROTATE0(Src, i, i*2*M_PI/180);
ROTATE0(DetS, i, i*2*M_PI/180);
ROTATE0(DetU, i, i*2*M_PI/180);
}
#undef ROTATE0
allocateVolume(D_volumeData, dims.iVolWidth+2, dims.iVolHeight+2, volumePitch);
printf("pitch: %u\n", volumePitch);
allocateVolume(D_projData, dims.iProjDets+2, dims.iProjAngles, projPitch);
printf("pitch: %u\n", projPitch);
unsigned int y, x;
float* sino = loadImage("sino.png", y, x);
float* img = new float[dims.iVolWidth*dims.iVolHeight];
memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float));
copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
FanBP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs);
copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
return 0;
}
#endif