/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#include
#include
#include
#include
typedef texture texture2D;
static texture2D gT_FanVolumeTexture;
namespace astraCUDA {
static const unsigned g_MaxAngles = 2560;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
// optimization parameters
static const unsigned int g_anglesPerBlock = 16;
static const unsigned int g_detBlockSize = 32;
static const unsigned int g_blockSlices = 64;
static bool bindVolumeDataTexture(float* data, cudaArray*& dataArray, unsigned int pitch, unsigned int width, unsigned int height)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
dataArray = 0;
cudaMallocArray(&dataArray, &channelDesc, width, height);
cudaMemcpy2DToArray(dataArray, 0, 0, data, pitch*sizeof(float), width*sizeof(float), height, cudaMemcpyDeviceToDevice);
gT_FanVolumeTexture.addressMode[0] = cudaAddressModeBorder;
gT_FanVolumeTexture.addressMode[1] = cudaAddressModeBorder;
gT_FanVolumeTexture.filterMode = cudaFilterModeLinear;
gT_FanVolumeTexture.normalized = false;
// TODO: For very small sizes (roughly <=512x128) with few angles (<=180)
// not using an array is more efficient.
//cudaBindTexture2D(0, gT_FanVolumeTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch);
cudaBindTextureToArray(gT_FanVolumeTexture, dataArray, channelDesc);
// TODO: error value?
return true;
}
// projection for angles that are roughly horizontal
// (detector roughly vertical)
__global__ void FanFPhorizontal(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
float* projData = (float*)D_projData;
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const int detector = blockIdx.y * g_detBlockSize + relDet;
if (detector < 0 || detector >= dims.iProjDets)
return;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fDetSX = gC_DetSX[angle];
const float fDetSY = gC_DetSY[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
float fVal = 0.0f;
const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX);
const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY);
if (fdy > fdx)
return;
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet;
const float fDetX = fDetSX + fDet * fDetUX;
const float fDetY = fDetSY + fDet * fDetUY;
// ray: y = alpha * x + beta
const float alpha = (fSrcY - fDetY) / (fSrcX - fDetX);
const float beta = fSrcY - alpha * fSrcX;
const float fDistCorr = sqrt(alpha*alpha+1.0f) * outputScale / dims.iRaysPerDet;
// intersect ray with first slice
float fY = -alpha * (startSlice - 0.5f*dims.iVolWidth + 0.5f) - beta + 0.5f*dims.iVolHeight - 0.5f + 0.5f;
float fX = startSlice + 0.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolWidth)
endSlice = dims.iVolWidth;
float fV = 0.0f;
for (int slice = startSlice; slice < endSlice; ++slice)
{
fV += tex2D(gT_FanVolumeTexture, fX, fY);
fY -= alpha;
fX += 1.0f;
}
fVal += fV * fDistCorr;
}
projData[angle*projPitch+detector] += fVal;
}
// projection for angles that are roughly vertical
// (detector roughly horizontal)
__global__ void FanFPvertical(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
const int relDet = threadIdx.x;
const int relAngle = threadIdx.y;
const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
if (angle >= endAngle)
return;
const int detector = blockIdx.y * g_detBlockSize + relDet;
if (detector < 0 || detector >= dims.iProjDets)
return;
float* projData = (float*)D_projData;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fDetSX = gC_DetSX[angle];
const float fDetSY = gC_DetSY[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
float fVal = 0.0f;
const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX);
const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY);
if (fdy <= fdx)
return;
for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet /*- gC_angle_offset[angle]*/;
const float fDetX = fDetSX + fDet * fDetUX;
const float fDetY = fDetSY + fDet * fDetUY;
// ray: x = alpha * y + beta
const float alpha = (fSrcX - fDetX) / (fSrcY - fDetY);
const float beta = fSrcX - alpha * fSrcY;
const float fDistCorr = sqrt(alpha*alpha+1) * outputScale / dims.iRaysPerDet;
// intersect ray with first slice
float fX = -alpha * (startSlice - 0.5f*dims.iVolHeight + 0.5f) + beta + 0.5f*dims.iVolWidth - 0.5f + 0.5f;
float fY = startSlice + 0.5f;
int endSlice = startSlice + g_blockSlices;
if (endSlice > dims.iVolHeight)
endSlice = dims.iVolHeight;
float fV = 0.0f;
for (int slice = startSlice; slice < endSlice; ++slice)
{
fV += tex2D(gT_FanVolumeTexture, fX, fY);
fX -= alpha;
fY += 1.0f;
}
fVal += fV * fDistCorr;
}
projData[angle*projPitch+detector] += fVal;
}
bool FanFP_internal(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const SFanProjection* angles,
float outputScale)
{
assert(dims.iProjAngles <= g_MaxAngles);
cudaArray* D_dataArray;
bindVolumeDataTexture(D_volumeData, D_dataArray, volumePitch, dims.iVolWidth, dims.iVolHeight);
// transfer angles to constant memory
float* tmp = new float[dims.iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
dim3 dimBlock(g_detBlockSize, g_anglesPerBlock); // region size, angles
const unsigned int g_blockSliceSize = g_detBlockSize;
std::list streams;
unsigned int blockStart = 0;
unsigned int blockEnd = dims.iProjAngles;
dim3 dimGrid((blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock,
(dims.iProjDets+g_blockSliceSize-1)/g_blockSliceSize); // angle blocks, regions
cudaStream_t stream1;
cudaStreamCreate(&stream1);
streams.push_back(stream1);
for (unsigned int i = 0; i < dims.iVolWidth; i += g_blockSlices)
FanFPhorizontal<<>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);
cudaStream_t stream2;
cudaStreamCreate(&stream2);
streams.push_back(stream2);
for (unsigned int i = 0; i < dims.iVolHeight; i += g_blockSlices)
FanFPvertical<<>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);
cudaThreadSynchronize();
cudaTextForceKernelsCompletion();
cudaFreeArray(D_dataArray);
return true;
}
bool FanFP(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const SFanProjection* angles,
float outputScale)
{
for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) {
SDimensions subdims = dims;
unsigned int iEndAngle = iAngle + g_MaxAngles;
if (iEndAngle >= dims.iProjAngles)
iEndAngle = dims.iProjAngles;
subdims.iProjAngles = iEndAngle - iAngle;
bool ret;
ret = FanFP_internal(D_volumeData, volumePitch,
D_projData + iAngle * projPitch, projPitch,
subdims, angles + iAngle,
outputScale);
if (!ret)
return false;
}
return true;
}
}
#ifdef STANDALONE
using namespace astraCUDA;
int main()
{
float* D_volumeData;
float* D_projData;
SDimensions dims;
dims.iVolWidth = 128;
dims.iVolHeight = 128;
dims.iProjAngles = 180;
dims.iProjDets = 256;
dims.fDetScale = 1.0f;
dims.iRaysPerDet = 1;
unsigned int volumePitch, projPitch;
SFanProjection projs[180];
projs[0].fSrcX = 0.0f;
projs[0].fSrcY = 1536.0f;
projs[0].fDetSX = 128.0f;
projs[0].fDetSY = -512.0f;
projs[0].fDetUX = -1.0f;
projs[0].fDetUY = 0.0f;
#define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 180; ++i) {
ROTATE0(Src, i, i*2*M_PI/180);
ROTATE0(DetS, i, i*2*M_PI/180);
ROTATE0(DetU, i, i*2*M_PI/180);
}
#undef ROTATE0
allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
printf("pitch: %u\n", volumePitch);
allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
printf("pitch: %u\n", projPitch);
unsigned int y, x;
float* img = loadImage("phantom128.png", y, x);
float* sino = new float[dims.iProjAngles * dims.iProjDets];
memset(sino, 0, dims.iProjAngles * dims.iProjDets * sizeof(float));
copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
float* angle = new float[dims.iProjAngles];
for (unsigned int i = 0; i < dims.iProjAngles; ++i)
angle[i] = i*(M_PI/dims.iProjAngles);
FanFP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs, 1.0f);
delete[] angle;
copySinogramFromDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);
float s = 0.0f;
for (unsigned int y = 0; y < dims.iProjAngles; ++y)
for (unsigned int x = 0; x < dims.iProjDets; ++x)
s += sino[y*dims.iProjDets+x] * sino[y*dims.iProjDets+x];
printf("cpu norm: %f\n", s);
//zeroVolume(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
printf("gpu norm: %f\n", s);
saveImage("sino.png",dims.iProjAngles,dims.iProjDets,sino);
return 0;
}
#endif