/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
2014-2021, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
#include
#include
#include
typedef texture texture2D;
static texture2D gT_projTexture;
namespace astraCUDA {
const unsigned int g_anglesPerBlock = 16;
const unsigned int g_blockSliceSize = 32;
const unsigned int g_blockSlices = 16;
const unsigned int g_MaxAngles = 2560;
__constant__ float gC_angle_scaled_sin[g_MaxAngles];
__constant__ float gC_angle_scaled_cos[g_MaxAngles];
__constant__ float gC_angle_offset[g_MaxAngles];
__constant__ float gC_angle_scale[g_MaxAngles];
// TODO: Templated version with/without scale? (Or only the global outputscale)
__global__ void devBP(float* D_volData, unsigned int volPitch, cudaTextureObject_t tex, unsigned int startAngle, const SDimensions dims, float fOutputScale)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles)
endAngle = dims.iProjAngles;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f );
const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f );
float* volData = (float*)D_volData;
float fVal = 0.0f;
float fA = startAngle + 0.5f;
for (int angle = startAngle; angle < endAngle; ++angle)
{
const float scaled_cos_theta = gC_angle_scaled_cos[angle];
const float scaled_sin_theta = gC_angle_scaled_sin[angle];
const float TOffset = gC_angle_offset[angle];
const float scale = gC_angle_scale[angle];
const float fT = fX * scaled_cos_theta - fY * scaled_sin_theta + TOffset;
fVal += tex2D(tex, fT, fA) * scale;
fA += 1.0f;
}
volData[Y*volPitch+X] += fVal * fOutputScale;
}
// supersampling version
__global__ void devBP_SS(float* D_volData, unsigned int volPitch, cudaTextureObject_t tex, unsigned int startAngle, const SDimensions dims, float fOutputScale)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
int endAngle = startAngle + g_anglesPerBlock;
if (endAngle > dims.iProjAngles)
endAngle = dims.iProjAngles;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim);
const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim);
const float fSubStep = 1.0f/(dims.iRaysPerPixelDim); // * dims.fDetScale);
float* volData = (float*)D_volData;
float fVal = 0.0f;
float fA = startAngle + 0.5f;
fOutputScale /= (dims.iRaysPerPixelDim * dims.iRaysPerPixelDim);
for (int angle = startAngle; angle < endAngle; ++angle)
{
const float cos_theta = gC_angle_scaled_cos[angle];
const float sin_theta = gC_angle_scaled_sin[angle];
const float TOffset = gC_angle_offset[angle];
const float scale = gC_angle_scale[angle];
float fT = fX * cos_theta - fY * sin_theta + TOffset;
for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) {
float fTy = fT;
fT += fSubStep * cos_theta;
for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) {
fVal += tex2D(tex, fTy, fA) * scale;
fTy -= fSubStep * sin_theta;
}
}
fA += 1.0f;
}
volData[Y*volPitch+X] += fVal * fOutputScale;
}
__global__ void devBP_SART(float* D_volData, unsigned int volPitch, cudaTextureObject_t tex, float offset, float angle_sin, float angle_cos, const SDimensions dims, float fOutputScale)
{
const int relX = threadIdx.x;
const int relY = threadIdx.y;
const int X = blockIdx.x * g_blockSlices + relX;
const int Y = blockIdx.y * g_blockSliceSize + relY;
if (X >= dims.iVolWidth || Y >= dims.iVolHeight)
return;
const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f );
const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f );
const float fT = fX * angle_cos - fY * angle_sin + offset;
const float fVal = tex2D(tex, fT, 0.5f);
// NB: The 'scale' constant in devBP is cancelled out by the SART weighting
D_volData[Y*volPitch+X] += fVal * fOutputScale;
}
bool BP_internal(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const SParProjection* angles,
float fOutputScale)
{
assert(dims.iProjAngles <= g_MaxAngles);
cudaTextureObject_t D_texObj;
if (!createTextureObjectPitch2D(D_projData, D_texObj, projPitch, dims.iProjDets, dims.iProjAngles))
return false;
float* angle_scaled_sin = new float[dims.iProjAngles];
float* angle_scaled_cos = new float[dims.iProjAngles];
float* angle_offset = new float[dims.iProjAngles];
float* angle_scale = new float[dims.iProjAngles];
for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
double d = angles[i].fDetUX * angles[i].fRayY - angles[i].fDetUY * angles[i].fRayX;
angle_scaled_cos[i] = angles[i].fRayY / d;
angle_scaled_sin[i] = -angles[i].fRayX / d;
angle_offset[i] = (angles[i].fDetSY * angles[i].fRayX - angles[i].fDetSX * angles[i].fRayY) / d;
angle_scale[i] = sqrt(angles[i].fRayX * angles[i].fRayX + angles[i].fRayY * angles[i].fRayY) / abs(d);
}
//fprintf(stderr, "outputscale in BP_internal: %f, %f\n", fOutputScale, angle_scale[0]);
//fprintf(stderr, "ray in BP_internal: %f,%f (length %f)\n", angles[0].fRayX, angles[0].fRayY, sqrt(angles[0].fRayX * angles[0].fRayX + angles[0].fRayY * angles[0].fRayY));
cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_scaled_sin, angle_scaled_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_scaled_cos, angle_scaled_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
cudaError_t e3 = cudaMemcpyToSymbol(gC_angle_offset, angle_offset, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
cudaError_t e4 = cudaMemcpyToSymbol(gC_angle_scale, angle_scale, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice);
assert(e1 == cudaSuccess);
assert(e2 == cudaSuccess);
assert(e3 == cudaSuccess);
assert(e4 == cudaSuccess);
delete[] angle_scaled_sin;
delete[] angle_scaled_cos;
delete[] angle_offset;
delete[] angle_scale;
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
(dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
cudaStream_t stream;
cudaStreamCreate(&stream);
for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) {
if (dims.iRaysPerPixelDim > 1)
devBP_SS<<>>(D_volumeData, volumePitch, D_texObj, i, dims, fOutputScale);
else
devBP<<>>(D_volumeData, volumePitch, D_texObj, i, dims, fOutputScale);
}
bool ok = checkCuda(cudaStreamSynchronize(stream), "par_bp");
cudaStreamDestroy(stream);
cudaDestroyTextureObject(D_texObj);
return ok;
}
bool BP(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
const SDimensions& dims, const SParProjection* angles, float fOutputScale)
{
for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) {
SDimensions subdims = dims;
unsigned int iEndAngle = iAngle + g_MaxAngles;
if (iEndAngle >= dims.iProjAngles)
iEndAngle = dims.iProjAngles;
subdims.iProjAngles = iEndAngle - iAngle;
bool ret;
ret = BP_internal(D_volumeData, volumePitch,
D_projData + iAngle * projPitch, projPitch,
subdims, angles + iAngle, fOutputScale);
if (!ret)
return false;
}
return true;
}
bool BP_SART(float* D_volumeData, unsigned int volumePitch,
float* D_projData, unsigned int projPitch,
unsigned int angle, const SDimensions& dims,
const SParProjection* angles, float fOutputScale)
{
// Only one angle.
// We need to Clamp to the border pixels instead of to zero, because
// SART weights with ray length.
cudaTextureObject_t D_texObj;
if (!createTextureObjectPitch2D(D_projData, D_texObj, projPitch, dims.iProjDets, 1, cudaAddressModeClamp))
return false;
double d = angles[angle].fDetUX * angles[angle].fRayY - angles[angle].fDetUY * angles[angle].fRayX;
float angle_scaled_cos = angles[angle].fRayY / d;
float angle_scaled_sin = -angles[angle].fRayX / d; // TODO: Check signs
float angle_offset = (angles[angle].fDetSY * angles[angle].fRayX - angles[angle].fDetSX * angles[angle].fRayY) / d;
// NB: The adjoint scaling factor from regular BP is cancelled out by the SART weighting
//fOutputScale *= sqrt(angles[angle].fRayX * angles[angle].fRayX + angles[angle].fRayY * angles[angle].fRayY) / abs(d);
dim3 dimBlock(g_blockSlices, g_blockSliceSize);
dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices,
(dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize);
devBP_SART<<>>(D_volumeData, volumePitch, D_texObj, angle_offset, angle_scaled_sin, angle_scaled_cos, dims, fOutputScale);
bool ok = checkCuda(cudaThreadSynchronize(), "BP_SART");
cudaDestroyTextureObject(D_texObj);
return ok;
}
}