/*
-----------------------------------------------------------------------
Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp
2014-2015, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include "sirt.h"
#include "util.h"
#include "arith.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
namespace astraCUDA {
SIRT::SIRT() : ReconAlgo()
{
D_projData = 0;
D_tmpData = 0;
D_lineWeight = 0;
D_pixelWeight = 0;
D_minMaskData = 0;
D_maxMaskData = 0;
fRelaxation = 1.0f;
freeMinMaxMasks = false;
}
SIRT::~SIRT()
{
reset();
}
void SIRT::reset()
{
cudaFree(D_projData);
cudaFree(D_tmpData);
cudaFree(D_lineWeight);
cudaFree(D_pixelWeight);
if (freeMinMaxMasks) {
cudaFree(D_minMaskData);
cudaFree(D_maxMaskData);
}
D_projData = 0;
D_tmpData = 0;
D_lineWeight = 0;
D_pixelWeight = 0;
freeMinMaxMasks = false;
D_minMaskData = 0;
D_maxMaskData = 0;
useVolumeMask = false;
useSinogramMask = false;
fRelaxation = 1.0f;
ReconAlgo::reset();
}
bool SIRT::init()
{
allocateVolumeData(D_pixelWeight, pixelPitch, dims);
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
allocateVolumeData(D_tmpData, tmpPitch, dims);
zeroVolumeData(D_tmpData, tmpPitch, dims);
allocateProjectionData(D_projData, projPitch, dims);
zeroProjectionData(D_projData, projPitch, dims);
allocateProjectionData(D_lineWeight, linePitch, dims);
zeroProjectionData(D_lineWeight, linePitch, dims);
// We can't precompute lineWeights and pixelWeights when using a mask
if (!useVolumeMask && !useSinogramMask)
precomputeWeights();
// TODO: check if allocations succeeded
return true;
}
bool SIRT::precomputeWeights()
{
zeroProjectionData(D_lineWeight, linePitch, dims);
if (useVolumeMask) {
callFP(D_maskData, maskPitch, D_lineWeight, linePitch, 1.0f);
} else {
processVol(D_tmpData, 1.0f, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_lineWeight, linePitch, 1.0f);
}
processSino(D_lineWeight, linePitch, dims);
if (useSinogramMask) {
// scale line weights with sinogram mask to zero out masked sinogram pixels
processSino(D_lineWeight, D_smaskData, linePitch, dims);
}
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
if (useSinogramMask) {
callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch, 1.0f);
} else {
processSino(D_projData, 1.0f, projPitch, dims);
callBP(D_pixelWeight, pixelPitch, D_projData, projPitch, 1.0f);
}
processVol(D_pixelWeight, pixelPitch, dims);
if (useVolumeMask) {
// scale pixel weights with mask to zero out masked pixels
processVol(D_pixelWeight, D_maskData, pixelPitch, dims);
}
// Also fold the relaxation factor into pixel weights
processVol(D_pixelWeight, fRelaxation, pixelPitch, dims);
return true;
}
bool SIRT::doSlabCorrections()
{
// This function compensates for effectively infinitely large slab-like
// objects of finite thickness 1.
// Each ray through the object has an intersection of length d/cos(alpha).
// The length of the ray actually intersecting the reconstruction volume is
// given by D_lineWeight. By dividing by 1/cos(alpha) and multiplying by the
// lineweights, we correct for this missing attenuation outside of the
// reconstruction volume, assuming the object is homogeneous.
// This effectively scales the output values by assuming the thickness d
// is 1 unit.
// This function in its current implementation only works if there are no masks.
// In this case, init() will also have already called precomputeWeights(),
// so we can use D_lineWeight.
if (useVolumeMask || useSinogramMask)
return false;
// multiply by line weights
processSino(D_sinoData, D_lineWeight, projPitch, dims);
SDimensions subdims = dims;
subdims.iProjAngles = 1;
// divide by 1/cos(angle)
// ...but limit the correction to -80/+80 degrees.
float bound = cosf(1.3963f);
float* t = (float*)D_sinoData;
for (int i = 0; i < dims.iProjAngles; ++i) {
float f = fabs(cosf(angles[i]));
if (f < bound)
f = bound;
processSino(t, f, sinoPitch, subdims);
t += sinoPitch;
}
return true;
}
bool SIRT::setMinMaxMasks(float* D_minMaskData_, float* D_maxMaskData_,
unsigned int iPitch)
{
D_minMaskData = D_minMaskData_;
D_maxMaskData = D_maxMaskData_;
minMaskPitch = iPitch;
maxMaskPitch = iPitch;
freeMinMaxMasks = false;
return true;
}
bool SIRT::uploadMinMaxMasks(const float* pfMinMaskData, const float* pfMaxMaskData,
unsigned int iPitch)
{
freeMinMaxMasks = true;
bool ok = true;
if (pfMinMaskData) {
allocateVolumeData(D_minMaskData, minMaskPitch, dims);
ok = copyVolumeToDevice(pfMinMaskData, iPitch,
dims,
D_minMaskData, minMaskPitch);
}
if (!ok)
return false;
if (pfMaxMaskData) {
allocateVolumeData(D_maxMaskData, maxMaskPitch, dims);
ok = copyVolumeToDevice(pfMaxMaskData, iPitch,
dims,
D_maxMaskData, maxMaskPitch);
}
if (!ok)
return false;
return true;
}
bool SIRT::iterate(unsigned int iterations)
{
shouldAbort = false;
if (useVolumeMask || useSinogramMask)
precomputeWeights();
// iteration
for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) {
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, projPitch, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims);
processVol(D_tmpData, D_maskData, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
} else {
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
}
processSino(D_projData, D_lineWeight, projPitch, dims);
zeroVolumeData(D_tmpData, tmpPitch, dims);
callBP(D_tmpData, tmpPitch, D_projData, projPitch, 1.0f);
// pixel weights also contain the volume mask and relaxation factor
processVol(D_volumeData, D_pixelWeight, D_tmpData, volumePitch, dims);
if (useMinConstraint)
processVol(D_volumeData, fMinConstraint, volumePitch, dims);
if (useMaxConstraint)
processVol(D_volumeData, fMaxConstraint, volumePitch, dims);
if (D_minMaskData)
processVol(D_volumeData, D_minMaskData, volumePitch, dims);
if (D_maxMaskData)
processVol(D_volumeData, D_maxMaskData, volumePitch, dims);
}
return true;
}
float SIRT::computeDiffNorm()
{
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, projPitch, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims);
processVol(D_tmpData, D_maskData, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
} else {
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
}
// compute norm of D_projData
float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
return sqrt(s);
}
bool doSIRT(float* D_volumeData, unsigned int volumePitch,
float* D_sinoData, unsigned int sinoPitch,
float* D_maskData, unsigned int maskPitch,
const SDimensions& dims, const float* angles,
const float* TOffsets, unsigned int iterations)
{
SIRT sirt;
bool ok = true;
ok &= sirt.setGeometry(dims, angles);
if (D_maskData)
ok &= sirt.enableVolumeMask();
if (TOffsets)
ok &= sirt.setTOffsets(TOffsets);
if (!ok)
return false;
ok = sirt.init();
if (!ok)
return false;
if (D_maskData)
ok &= sirt.setVolumeMask(D_maskData, maskPitch);
ok &= sirt.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
if (!ok)
return false;
ok = sirt.iterate(iterations);
return ok;
}
}
#ifdef STANDALONE
using namespace astraCUDA;
int main()
{
float* D_volumeData;
float* D_sinoData;
SDimensions dims;
dims.iVolWidth = 1024;
dims.iVolHeight = 1024;
dims.iProjAngles = 512;
dims.iProjDets = 1536;
dims.fDetScale = 1.0f;
dims.iRaysPerDet = 1;
unsigned int volumePitch, sinoPitch;
allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
zeroVolume(D_volumeData, volumePitch, dims.iVolWidth, dims.iVolHeight);
printf("pitch: %u\n", volumePitch);
allocateVolume(D_sinoData, dims.iProjDets, dims.iProjAngles, sinoPitch);
zeroVolume(D_sinoData, sinoPitch, dims.iProjDets, dims.iProjAngles);
printf("pitch: %u\n", sinoPitch);
unsigned int y, x;
float* sino = loadImage("sino.png", y, x);
float* img = new float[dims.iVolWidth*dims.iVolHeight];
copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_sinoData, sinoPitch);
float* angle = new float[dims.iProjAngles];
for (unsigned int i = 0; i < dims.iProjAngles; ++i)
angle[i] = i*(M_PI/dims.iProjAngles);
SIRT sirt;
sirt.setGeometry(dims, angle);
sirt.init();
sirt.setBuffers(D_volumeData, volumePitch, D_sinoData, sinoPitch);
sirt.iterate(25);
delete[] angle;
copyVolumeFromDevice(img, dims.iVolWidth, dims, D_volumeData, volumePitch);
saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img);
return 0;
}
#endif