/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/2d/sirt.h"
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"
#include
#include
namespace astraCUDA {
SIRT::SIRT() : ReconAlgo()
{
D_projData = 0;
D_tmpData = 0;
D_lineWeight = 0;
D_pixelWeight = 0;
D_minMaskData = 0;
D_maxMaskData = 0;
fRelaxation = 1.0f;
freeMinMaxMasks = false;
}
SIRT::~SIRT()
{
reset();
}
void SIRT::reset()
{
cudaFree(D_projData);
cudaFree(D_tmpData);
cudaFree(D_lineWeight);
cudaFree(D_pixelWeight);
if (freeMinMaxMasks) {
cudaFree(D_minMaskData);
cudaFree(D_maxMaskData);
}
D_projData = 0;
D_tmpData = 0;
D_lineWeight = 0;
D_pixelWeight = 0;
freeMinMaxMasks = false;
D_minMaskData = 0;
D_maxMaskData = 0;
useVolumeMask = false;
useSinogramMask = false;
fRelaxation = 1.0f;
ReconAlgo::reset();
}
bool SIRT::init()
{
allocateVolumeData(D_pixelWeight, pixelPitch, dims);
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
allocateVolumeData(D_tmpData, tmpPitch, dims);
zeroVolumeData(D_tmpData, tmpPitch, dims);
allocateProjectionData(D_projData, projPitch, dims);
zeroProjectionData(D_projData, projPitch, dims);
allocateProjectionData(D_lineWeight, linePitch, dims);
zeroProjectionData(D_lineWeight, linePitch, dims);
// We can't precompute lineWeights and pixelWeights when using a mask
if (!useVolumeMask && !useSinogramMask)
precomputeWeights();
// TODO: check if allocations succeeded
return true;
}
bool SIRT::precomputeWeights()
{
zeroProjectionData(D_lineWeight, linePitch, dims);
if (useVolumeMask) {
callFP(D_maskData, maskPitch, D_lineWeight, linePitch, 1.0f);
} else {
processVol(D_tmpData, 1.0f, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_lineWeight, linePitch, 1.0f);
}
processSino(D_lineWeight, linePitch, dims);
if (useSinogramMask) {
// scale line weights with sinogram mask to zero out masked sinogram pixels
processSino(D_lineWeight, D_smaskData, linePitch, dims);
}
zeroVolumeData(D_pixelWeight, pixelPitch, dims);
if (useSinogramMask) {
callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch, 1.0f);
} else {
processSino(D_projData, 1.0f, projPitch, dims);
callBP(D_pixelWeight, pixelPitch, D_projData, projPitch, 1.0f);
}
processVol(D_pixelWeight, pixelPitch, dims);
if (useVolumeMask) {
// scale pixel weights with mask to zero out masked pixels
processVol(D_pixelWeight, D_maskData, pixelPitch, dims);
}
// Also fold the relaxation factor into pixel weights
processVol(D_pixelWeight, fRelaxation, pixelPitch, dims);
return true;
}
bool SIRT::doSlabCorrections()
{
// This function compensates for effectively infinitely large slab-like
// objects of finite thickness 1 in a parallel beam geometry.
// Each ray through the object has an intersection of length d/cos(alpha).
// The length of the ray actually intersecting the reconstruction volume is
// given by D_lineWeight. By dividing by 1/cos(alpha) and multiplying by the
// lineweights, we correct for this missing attenuation outside of the
// reconstruction volume, assuming the object is homogeneous.
// This effectively scales the output values by assuming the thickness d
// is 1 unit.
// This function in its current implementation only works if there are no masks.
// In this case, init() will also have already called precomputeWeights(),
// so we can use D_lineWeight.
if (useVolumeMask || useSinogramMask)
return false;
// Parallel-beam only
if (!parProjs)
return false;
// multiply by line weights
processSino(D_sinoData, D_lineWeight, projPitch, dims);
SDimensions subdims = dims;
subdims.iProjAngles = 1;
// divide by 1/cos(angle)
// ...but limit the correction to -80/+80 degrees.
float bound = cosf(1.3963f);
float* t = (float*)D_sinoData;
for (int i = 0; i < dims.iProjAngles; ++i) {
float angle, detsize, offset;
getParParameters(parProjs[i], dims.iProjDets, angle, detsize, offset);
float f = fabs(cosf(angle));
if (f < bound)
f = bound;
processSino(t, f, sinoPitch, subdims);
t += sinoPitch;
}
return true;
}
bool SIRT::setMinMaxMasks(float* D_minMaskData_, float* D_maxMaskData_,
unsigned int iPitch)
{
D_minMaskData = D_minMaskData_;
D_maxMaskData = D_maxMaskData_;
minMaskPitch = iPitch;
maxMaskPitch = iPitch;
freeMinMaxMasks = false;
return true;
}
bool SIRT::uploadMinMaxMasks(const float* pfMinMaskData, const float* pfMaxMaskData,
unsigned int iPitch)
{
freeMinMaxMasks = true;
bool ok = true;
if (pfMinMaskData) {
allocateVolumeData(D_minMaskData, minMaskPitch, dims);
ok = copyVolumeToDevice(pfMinMaskData, iPitch,
dims,
D_minMaskData, minMaskPitch);
}
if (!ok)
return false;
if (pfMaxMaskData) {
allocateVolumeData(D_maxMaskData, maxMaskPitch, dims);
ok = copyVolumeToDevice(pfMaxMaskData, iPitch,
dims,
D_maxMaskData, maxMaskPitch);
}
if (!ok)
return false;
return true;
}
bool SIRT::iterate(unsigned int iterations)
{
if (useVolumeMask || useSinogramMask)
precomputeWeights();
// iteration
for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) {
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, projPitch, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims);
processVol(D_tmpData, D_maskData, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
} else {
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
}
processSino(D_projData, D_lineWeight, projPitch, dims);
zeroVolumeData(D_tmpData, tmpPitch, dims);
callBP(D_tmpData, tmpPitch, D_projData, projPitch, 1.0f);
// pixel weights also contain the volume mask and relaxation factor
processVol(D_volumeData, D_pixelWeight, D_tmpData, volumePitch, dims);
if (useMinConstraint)
processVol(D_volumeData, fMinConstraint, volumePitch, dims);
if (useMaxConstraint)
processVol(D_volumeData, fMaxConstraint, volumePitch, dims);
if (D_minMaskData)
processVol(D_volumeData, D_minMaskData, volumePitch, dims);
if (D_maxMaskData)
processVol(D_volumeData, D_maxMaskData, volumePitch, dims);
}
return true;
}
float SIRT::computeDiffNorm()
{
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, projPitch, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims);
processVol(D_tmpData, D_maskData, tmpPitch, dims);
callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f);
} else {
callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f);
}
// compute norm of D_projData
float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
return sqrt(s);
}
}