/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include "astra/cuda/2d/sirt.h" #include "astra/cuda/2d/util.h" #include "astra/cuda/2d/arith.h" #include #include namespace astraCUDA { SIRT::SIRT() : ReconAlgo() { D_projData = 0; D_tmpData = 0; D_lineWeight = 0; D_pixelWeight = 0; D_minMaskData = 0; D_maxMaskData = 0; fRelaxation = 1.0f; freeMinMaxMasks = false; } SIRT::~SIRT() { reset(); } void SIRT::reset() { cudaFree(D_projData); cudaFree(D_tmpData); cudaFree(D_lineWeight); cudaFree(D_pixelWeight); if (freeMinMaxMasks) { cudaFree(D_minMaskData); cudaFree(D_maxMaskData); } D_projData = 0; D_tmpData = 0; D_lineWeight = 0; D_pixelWeight = 0; freeMinMaxMasks = false; D_minMaskData = 0; D_maxMaskData = 0; useVolumeMask = false; useSinogramMask = false; fRelaxation = 1.0f; ReconAlgo::reset(); } bool SIRT::init() { allocateVolumeData(D_pixelWeight, pixelPitch, dims); zeroVolumeData(D_pixelWeight, pixelPitch, dims); allocateVolumeData(D_tmpData, tmpPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); allocateProjectionData(D_projData, projPitch, dims); zeroProjectionData(D_projData, projPitch, dims); allocateProjectionData(D_lineWeight, linePitch, dims); zeroProjectionData(D_lineWeight, linePitch, dims); // We can't precompute lineWeights and pixelWeights when using a mask if (!useVolumeMask && !useSinogramMask) precomputeWeights(); // TODO: check if allocations succeeded return true; } bool SIRT::precomputeWeights() { zeroProjectionData(D_lineWeight, linePitch, dims); if (useVolumeMask) { callFP(D_maskData, maskPitch, D_lineWeight, linePitch, 1.0f); } else { processVol(D_tmpData, 1.0f, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_lineWeight, linePitch, 1.0f); } processSino(D_lineWeight, linePitch, dims); if (useSinogramMask) { // scale line weights with sinogram mask to zero out masked sinogram pixels processSino(D_lineWeight, D_smaskData, linePitch, dims); } zeroVolumeData(D_pixelWeight, pixelPitch, dims); if (useSinogramMask) { callBP(D_pixelWeight, pixelPitch, D_smaskData, smaskPitch, 1.0f); } else { processSino(D_projData, 1.0f, projPitch, dims); callBP(D_pixelWeight, pixelPitch, D_projData, projPitch, 1.0f); } processVol(D_pixelWeight, pixelPitch, dims); if (useVolumeMask) { // scale pixel weights with mask to zero out masked pixels processVol(D_pixelWeight, D_maskData, pixelPitch, dims); } // Also fold the relaxation factor into pixel weights processVol(D_pixelWeight, fRelaxation, pixelPitch, dims); return true; } bool SIRT::doSlabCorrections() { // This function compensates for effectively infinitely large slab-like // objects of finite thickness 1 in a parallel beam geometry. // Each ray through the object has an intersection of length d/cos(alpha). // The length of the ray actually intersecting the reconstruction volume is // given by D_lineWeight. By dividing by 1/cos(alpha) and multiplying by the // lineweights, we correct for this missing attenuation outside of the // reconstruction volume, assuming the object is homogeneous. // This effectively scales the output values by assuming the thickness d // is 1 unit. // This function in its current implementation only works if there are no masks. // In this case, init() will also have already called precomputeWeights(), // so we can use D_lineWeight. if (useVolumeMask || useSinogramMask) return false; // Parallel-beam only if (!parProjs) return false; // multiply by line weights processSino(D_sinoData, D_lineWeight, projPitch, dims); SDimensions subdims = dims; subdims.iProjAngles = 1; // divide by 1/cos(angle) // ...but limit the correction to -80/+80 degrees. float bound = cosf(1.3963f); float* t = (float*)D_sinoData; for (int i = 0; i < dims.iProjAngles; ++i) { float angle, detsize, offset; getParParameters(parProjs[i], dims.iProjDets, angle, detsize, offset); float f = fabs(cosf(angle)); if (f < bound) f = bound; processSino(t, f, sinoPitch, subdims); t += sinoPitch; } return true; } bool SIRT::setMinMaxMasks(float* D_minMaskData_, float* D_maxMaskData_, unsigned int iPitch) { D_minMaskData = D_minMaskData_; D_maxMaskData = D_maxMaskData_; minMaskPitch = iPitch; maxMaskPitch = iPitch; freeMinMaxMasks = false; return true; } bool SIRT::uploadMinMaxMasks(const float* pfMinMaskData, const float* pfMaxMaskData, unsigned int iPitch) { freeMinMaxMasks = true; bool ok = true; if (pfMinMaskData) { allocateVolumeData(D_minMaskData, minMaskPitch, dims); ok = copyVolumeToDevice(pfMinMaskData, iPitch, dims, D_minMaskData, minMaskPitch); } if (!ok) return false; if (pfMaxMaskData) { allocateVolumeData(D_maxMaskData, maxMaskPitch, dims); ok = copyVolumeToDevice(pfMaxMaskData, iPitch, dims, D_maxMaskData, maxMaskPitch); } if (!ok) return false; return true; } bool SIRT::iterate(unsigned int iterations) { if (useVolumeMask || useSinogramMask) precomputeWeights(); // iteration for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, projPitch, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol(D_tmpData, D_maskData, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f); } processSino(D_projData, D_lineWeight, projPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); callBP(D_tmpData, tmpPitch, D_projData, projPitch, 1.0f); // pixel weights also contain the volume mask and relaxation factor processVol(D_volumeData, D_pixelWeight, D_tmpData, volumePitch, dims); if (useMinConstraint) processVol(D_volumeData, fMinConstraint, volumePitch, dims); if (useMaxConstraint) processVol(D_volumeData, fMaxConstraint, volumePitch, dims); if (D_minMaskData) processVol(D_volumeData, D_minMaskData, volumePitch, dims); if (D_maxMaskData) processVol(D_volumeData, D_maxMaskData, volumePitch, dims); } return true; } float SIRT::computeDiffNorm() { // copy sinogram to projection data duplicateProjectionData(D_projData, D_sinoData, projPitch, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol(D_tmpData, D_maskData, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_projData, projPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_projData, projPitch, -1.0f); } // compute norm of D_projData float s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); return sqrt(s); } }