/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- $Id$ */ #include #include #include #include #include #include "util3d.h" #ifdef STANDALONE #include "cone_fp.h" #include "testutil.h" #endif #include "dims3d.h" #include "../2d/fft.h" typedef texture texture3D; static texture3D gT_coneProjTexture; namespace astraCUDA3d { static const unsigned int g_volBlockZ = 16; static const unsigned int g_anglesPerBlock = 64; static const unsigned int g_volBlockX = 32; static const unsigned int g_volBlockY = 16; static const unsigned int g_anglesPerWeightBlock = 16; static const unsigned int g_detBlockU = 32; static const unsigned int g_detBlockV = 32; static const unsigned g_MaxAngles = 2048; __constant__ float gC_angle_sin[g_MaxAngles]; __constant__ float gC_angle_cos[g_MaxAngles]; __constant__ float gC_angle[g_MaxAngles]; // per-detector u/v shifts? static bool bindProjDataTexture(const cudaArray* array) { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(); gT_coneProjTexture.addressMode[0] = cudaAddressModeClamp; gT_coneProjTexture.addressMode[1] = cudaAddressModeClamp; gT_coneProjTexture.addressMode[2] = cudaAddressModeClamp; gT_coneProjTexture.filterMode = cudaFilterModeLinear; gT_coneProjTexture.normalized = false; cudaBindTextureToArray(gT_coneProjTexture, array, channelDesc); // TODO: error value? return true; } __global__ void devBP_FDK(void* D_volData, unsigned int volPitch, int startAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fInvDetUSize, float fInvDetVSize, const SDimensions3D dims) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z // TO TRY: precompute part of detector intersection formulas in shared mem? // TO TRY: inner loop over z, gather ray values in shared mem const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X > dims.iVolX) return; if (Y > dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; int endZ = startZ + g_volBlockZ; if (endZ > dims.iVolZ) endZ = dims.iVolZ; float fX = X - 0.5f*dims.iVolX + 0.5f; float fY = Y - 0.5f*dims.iVolY + 0.5f; float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - fSrcZ; const float fU_base = 0.5f*dims.iProjU - 0.5f + 1.5f; const float fV_base = 0.5f*dims.iProjV - 0.5f + 1.5f + (fDetZ-fSrcZ); // Note re. fZ/rV_base: the computations below are all relative to the // optical axis, so we do the Z-adjustments beforehand. for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f) { float fVal = 0.0f; float fAngle = startAngle + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { const float cos_theta = gC_angle_cos[angle]; const float sin_theta = gC_angle_sin[angle]; const float fR = fSrcOrigin; const float fD = fR - fX * sin_theta + fY * cos_theta; float fWeight = fR / fD; fWeight *= fWeight; const float fScaleFactor = (fR + fDetOrigin) / fD; const float fU = fU_base + (fX*cos_theta+fY*sin_theta) * fScaleFactor * fInvDetUSize; const float fV = fV_base + fZ * fScaleFactor * fInvDetVSize; fVal += tex3D(gT_coneProjTexture, fU, fAngle, fV); } volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal; // projData[(angle*dims.iProjV+detectorV)*projPitch+detectorU] = 10.0f; // if (threadIdx.x == 0 && threadIdx.y == 0) { printf("%d,%d,%d [%d / %d] -> %f\n", angle, detectorU, detectorV, (angle*dims.iProjV+detectorV)*projPitch+detectorU, projPitch, projData[(angle*dims.iProjV+detectorV)*projPitch+detectorU]); } } } bool FDK_BP(cudaPitchedPtr D_volumeData, cudaPitchedPtr D_projData, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, const SDimensions3D& dims, const float* angles) { // transfer projections to array cudaArray* cuArray = allocateProjectionArray(dims); transferProjectionsToArray(D_projData, cuArray, dims); bindProjDataTexture(cuArray); float* angle_sin = new float[dims.iProjAngles]; float* angle_cos = new float[dims.iProjAngles]; for (unsigned int i = 0; i < dims.iProjAngles; ++i) { angle_sin[i] = sinf(angles[i]); angle_cos[i] = cosf(angles[i]); } cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_sin, angle_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_cos, angle_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); assert(e1 == cudaSuccess); assert(e2 == cudaSuccess); delete[] angle_sin; delete[] angle_cos; dim3 dimBlock(g_volBlockX, g_volBlockY); dim3 dimGrid(((dims.iVolX+g_volBlockX-1)/g_volBlockX)*((dims.iVolY+g_volBlockY-1)/g_volBlockY), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ); // timeval t; // tic(t); for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) { devBP_FDK<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), i, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, 1.0f / fDetUSize, 1.0f / fDetVSize, dims); } cudaTextForceKernelsCompletion(); cudaFreeArray(cuArray); // printf("%f\n", toc(t)); return true; } __global__ void devFDK_preweight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, const SDimensions3D dims) { float* projData = (float*)D_projData; int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y; if (angle >= endAngle) return; const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; int endDetectorV = startDetectorV + g_detBlockV; if (endDetectorV > dims.iProjV) endDetectorV = dims.iProjV; // We need the length of the central ray and the length of the ray(s) to // our detector pixel(s). const float fCentralRayLength = fSrcOrigin + fDetOrigin; const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize; const float fT = fCentralRayLength * fCentralRayLength + fU * fU; float fV = (startDetectorV - 0.5f*dims.iProjV + 0.5f) * fDetVSize + fDetZ - fSrcZ; for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) { const float fRayLength = sqrtf(fT + fV * fV); const float fWeight = fCentralRayLength / fRayLength; projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight; fV += 1.0f; } } __global__ void devFDK_ParkerWeight(void* D_projData, unsigned int projPitch, unsigned int startAngle, unsigned int endAngle, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fCentralFanAngle, const SDimensions3D dims) { float* projData = (float*)D_projData; int angle = startAngle + blockIdx.y * g_anglesPerWeightBlock + threadIdx.y; if (angle >= endAngle) return; const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; int endDetectorV = startDetectorV + g_detBlockV; if (endDetectorV > dims.iProjV) endDetectorV = dims.iProjV; // We need the length of the central ray and the length of the projection // of our ray onto the central slice const float fCentralRayLength = fSrcOrigin + fDetOrigin; // TODO: Detector pixel size const float fU = (detectorU - 0.5f*dims.iProjU + 0.5f) * fDetUSize; //const float fGamma = atanf(fU / fCentralRayLength); //const float fBeta = gC_angle[angle]; const float fGamma = atanf(fU / fCentralRayLength); const float fBeta = -gC_angle[angle]; // compute the weight depending on the location in the central fan's radon // space float fWeight; if (fBeta <= 0.0f) { fWeight = 0.0f; } else if (fBeta <= 2.0f*(fCentralFanAngle + fGamma)) { fWeight = sinf((M_PI / 4.0f) * fBeta / (fCentralFanAngle + fGamma)); fWeight *= fWeight; } else if (fBeta <= M_PI + 2*fGamma) { fWeight = 1.0f; } else if (fBeta <= M_PI + 2*fCentralFanAngle) { fWeight = sinf((M_PI / 4.0f) * (M_PI + 2.0f*fCentralFanAngle - fBeta) / (fCentralFanAngle - fGamma)); fWeight *= fWeight; } else { fWeight = 0.0f; } for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) { projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] *= fWeight; } } // Perform the FDK pre-weighting and filtering bool FDK_Filter(cudaPitchedPtr D_projData, cufftComplex * D_filter, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, bool bShortScan, const SDimensions3D& dims, const float* angles) { // The pre-weighting factor for a ray is the cosine of the angle between // the central line and the ray. dim3 dimBlock(g_detBlockU, g_anglesPerWeightBlock); dim3 dimGrid( ((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV), (dims.iProjAngles+g_anglesPerWeightBlock-1)/g_anglesPerWeightBlock); int projPitch = D_projData.pitch/sizeof(float); devFDK_preweight<<>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fDetVSize, dims); cudaTextForceKernelsCompletion(); if (bShortScan) { // We do short-scan Parker weighting cudaError_t e1 = cudaMemcpyToSymbol(gC_angle, angles, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); assert(!e1); // TODO: detector pixel size! float fCentralFanAngle = atanf((dims.iProjU*0.5f) / (fSrcOrigin + fDetOrigin)); devFDK_ParkerWeight<<>>(D_projData.ptr, projPitch, 0, dims.iProjAngles, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fCentralFanAngle, dims); } cudaTextForceKernelsCompletion(); // The filtering is a regular ramp filter per detector line. int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU); int iHalfFFTSize = calcFFTFourSize(iPaddedDetCount); // We process one sinogram at a time. float* D_sinoData = (float*)D_projData.ptr; cufftComplex * D_sinoFFT = NULL; allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_sinoFFT); bool ok = true; for (int v = 0; v < dims.iProjV; ++v) { ok = runCudaFFT(dims.iProjAngles, D_sinoData, projPitch, 0, dims.iProjU, iPaddedDetCount, iHalfFFTSize, D_sinoFFT); if (!ok) break; applyFilter(dims.iProjAngles, iHalfFFTSize, D_sinoFFT, D_filter); ok = runCudaIFFT(dims.iProjAngles, D_sinoFFT, D_sinoData, projPitch, 0, dims.iProjU, iPaddedDetCount, iHalfFFTSize); if (!ok) break; D_sinoData += (dims.iProjAngles * projPitch); } freeComplexOnDevice(D_sinoFFT); return ok; } bool FDK(cudaPitchedPtr D_volumeData, cudaPitchedPtr D_projData, float fSrcOrigin, float fDetOrigin, float fSrcZ, float fDetZ, float fDetUSize, float fDetVSize, const SDimensions3D& dims, const float* angles, bool bShortScan) { bool ok; // Generate filter // TODO: Check errors cufftComplex * D_filter; int iPaddedDetCount = calcNextPowerOfTwo(2 * dims.iProjU); int iHalfFFTSize = calcFFTFourSize(iPaddedDetCount); cufftComplex *pHostFilter = new cufftComplex[dims.iProjAngles * iHalfFFTSize]; memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iHalfFFTSize); genFilter(FILTER_RAMLAK, 1.0f, dims.iProjAngles, pHostFilter, iPaddedDetCount, iHalfFFTSize); allocateComplexOnDevice(dims.iProjAngles, iHalfFFTSize, &D_filter); uploadComplexArrayToDevice(dims.iProjAngles, iHalfFFTSize, pHostFilter, D_filter); delete [] pHostFilter; // Perform filtering ok = FDK_Filter(D_projData, D_filter, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fDetVSize, bShortScan, dims, angles); // Clean up filter freeComplexOnDevice(D_filter); if (!ok) return false; // Perform BP ok = FDK_BP(D_volumeData, D_projData, fSrcOrigin, fDetOrigin, fSrcZ, fDetZ, fDetUSize, fDetVSize, dims, angles); if (!ok) return false; return true; } } #ifdef STANDALONE void dumpVolume(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) { float* buf = new float[dims.iVolX*dims.iVolY]; unsigned int pitch = data.pitch / sizeof(float); for (int i = 0; i < dims.iVolZ; ++i) { cudaMemcpy2D(buf, dims.iVolX*sizeof(float), ((float*)data.ptr)+pitch*dims.iVolY*i, data.pitch, dims.iVolX*sizeof(float), dims.iVolY, cudaMemcpyDeviceToHost); char fname[512]; sprintf(fname, filespec, dims.iVolZ-i-1); saveImage(fname, dims.iVolY, dims.iVolX, buf, fMin, fMax); } } void dumpSinograms(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) { float* bufs = new float[dims.iProjAngles*dims.iProjU]; unsigned int pitch = data.pitch / sizeof(float); for (int i = 0; i < dims.iProjV; ++i) { cudaMemcpy2D(bufs, dims.iProjU*sizeof(float), ((float*)data.ptr)+pitch*dims.iProjAngles*i, data.pitch, dims.iProjU*sizeof(float), dims.iProjAngles, cudaMemcpyDeviceToHost); char fname[512]; sprintf(fname, filespec, i); saveImage(fname, dims.iProjAngles, dims.iProjU, bufs, fMin, fMax); } } void dumpProjections(const char* filespec, const cudaPitchedPtr& data, const SDimensions3D& dims, float fMin, float fMax) { float* bufp = new float[dims.iProjV*dims.iProjU]; unsigned int pitch = data.pitch / sizeof(float); for (int i = 0; i < dims.iProjAngles; ++i) { for (int j = 0; j < dims.iProjV; ++j) { cudaMemcpy(bufp+dims.iProjU*j, ((float*)data.ptr)+pitch*dims.iProjAngles*j+pitch*i, dims.iProjU*sizeof(float), cudaMemcpyDeviceToHost); } char fname[512]; sprintf(fname, filespec, i); saveImage(fname, dims.iProjV, dims.iProjU, bufp, fMin, fMax); } } int main() { #if 0 SDimensions3D dims; dims.iVolX = 512; dims.iVolY = 512; dims.iVolZ = 512; dims.iProjAngles = 180; dims.iProjU = 1024; dims.iProjV = 1024; dims.iRaysPerDet = 1; cudaExtent extentV; extentV.width = dims.iVolX*sizeof(float); extentV.height = dims.iVolY; extentV.depth = dims.iVolZ; cudaPitchedPtr volData; // pitch, ptr, xsize, ysize cudaMalloc3D(&volData, extentV); cudaExtent extentP; extentP.width = dims.iProjU*sizeof(float); extentP.height = dims.iProjAngles; extentP.depth = dims.iProjV; cudaPitchedPtr projData; // pitch, ptr, xsize, ysize cudaMalloc3D(&projData, extentP); cudaMemset3D(projData, 0, extentP); #if 0 float* slice = new float[256*256]; cudaPitchedPtr ptr; ptr.ptr = slice; ptr.pitch = 256*sizeof(float); ptr.xsize = 256*sizeof(float); ptr.ysize = 256; for (unsigned int i = 0; i < 256*256; ++i) slice[i] = 1.0f; for (unsigned int i = 0; i < 256; ++i) { cudaExtent extentS; extentS.width = dims.iVolX*sizeof(float); extentS.height = dims.iVolY; extentS.depth = 1; cudaPos sp = { 0, 0, 0 }; cudaPos dp = { 0, 0, i }; cudaMemcpy3DParms p; p.srcArray = 0; p.srcPos = sp; p.srcPtr = ptr; p.dstArray = 0; p.dstPos = dp; p.dstPtr = volData; p.extent = extentS; p.kind = cudaMemcpyHostToDevice; cudaMemcpy3D(&p); #if 0 if (i == 128) { for (unsigned int j = 0; j < 256*256; ++j) slice[j] = 0.0f; } #endif } #endif SConeProjection angle[180]; angle[0].fSrcX = -1536; angle[0].fSrcY = 0; angle[0].fSrcZ = 0; angle[0].fDetSX = 1024; angle[0].fDetSY = -512; angle[0].fDetSZ = 512; angle[0].fDetUX = 0; angle[0].fDetUY = 1; angle[0].fDetUZ = 0; angle[0].fDetVX = 0; angle[0].fDetVY = 0; angle[0].fDetVZ = -1; #define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0) for (int i = 1; i < 180; ++i) { angle[i] = angle[0]; ROTATE0(Src, i, i*2*M_PI/180); ROTATE0(DetS, i, i*2*M_PI/180); ROTATE0(DetU, i, i*2*M_PI/180); ROTATE0(DetV, i, i*2*M_PI/180); } #undef ROTATE0 astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f); //dumpSinograms("sino%03d.png", projData, dims, 0, 512); //dumpProjections("proj%03d.png", projData, dims, 0, 512); astraCUDA3d::zeroVolumeData(volData, dims); float* angles = new float[dims.iProjAngles]; for (int i = 0; i < 180; ++i) angles[i] = i*2*M_PI/180; astraCUDA3d::FDK(volData, projData, 1536, 512, 0, 0, dims, angles); dumpVolume("vol%03d.png", volData, dims, -20, 100); #else SDimensions3D dims; dims.iVolX = 1000; dims.iVolY = 999; dims.iVolZ = 500; dims.iProjAngles = 376; dims.iProjU = 1024; dims.iProjV = 524; dims.iRaysPerDet = 1; float* angles = new float[dims.iProjAngles]; for (int i = 0; i < dims.iProjAngles; ++i) angles[i] = -i*(M_PI)/360; cudaPitchedPtr volData = astraCUDA3d::allocateVolumeData(dims); cudaPitchedPtr projData = astraCUDA3d::allocateProjectionData(dims); astraCUDA3d::zeroProjectionData(projData, dims); astraCUDA3d::zeroVolumeData(volData, dims); timeval t; tic(t); for (int i = 0; i < dims.iProjAngles; ++i) { char fname[256]; sprintf(fname, "/home/wpalenst/tmp/Elke/proj%04d.png", i); unsigned int w,h; float* bufp = loadImage(fname, w,h); int pitch = projData.pitch / sizeof(float); for (int j = 0; j < dims.iProjV; ++j) { cudaMemcpy(((float*)projData.ptr)+dims.iProjAngles*pitch*j+pitch*i, bufp+dims.iProjU*j, dims.iProjU*sizeof(float), cudaMemcpyHostToDevice); } delete[] bufp; } printf("Load time: %f\n", toc(t)); //dumpSinograms("sino%03d.png", projData, dims, -8.0f, 256.0f); //astraCUDA3d::FDK(volData, projData, 7350, 62355, 0, 10, dims, angles); //astraCUDA3d::FDK(volData, projData, 7350, -380, 0, 10, dims, angles); tic(t); astraCUDA3d::FDK(volData, projData, 7383.29867, 0, 0, 10, dims, angles); printf("FDK time: %f\n", toc(t)); tic(t); dumpVolume("vol%03d.png", volData, dims, -65.9f, 200.0f); //dumpVolume("vol%03d.png", volData, dims, 0.0f, 256.0f); printf("Save time: %f\n", toc(t)); #endif } #endif