/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include
#include
#include
#include "util3d.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#include "dims3d.h"
typedef texture texture3D;
static texture3D gT_par3DVolumeTexture;
namespace astraCUDA3d {
static const unsigned int g_anglesPerBlock = 4;
// thickness of the slices we're splitting the volume up into
static const unsigned int g_blockSlices = 64;
static const unsigned int g_detBlockU = 32;
static const unsigned int g_detBlockV = 32;
static const unsigned g_MaxAngles = 1024;
__constant__ float gC_RayX[g_MaxAngles];
__constant__ float gC_RayY[g_MaxAngles];
__constant__ float gC_RayZ[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetSZ[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
__constant__ float gC_DetUZ[g_MaxAngles];
__constant__ float gC_DetVX[g_MaxAngles];
__constant__ float gC_DetVY[g_MaxAngles];
__constant__ float gC_DetVZ[g_MaxAngles];
static bool bindVolumeDataTexture(const cudaArray* array)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
gT_par3DVolumeTexture.addressMode[0] = cudaAddressModeBorder;
gT_par3DVolumeTexture.addressMode[1] = cudaAddressModeBorder;
gT_par3DVolumeTexture.addressMode[2] = cudaAddressModeBorder;
gT_par3DVolumeTexture.filterMode = cudaFilterModeLinear;
gT_par3DVolumeTexture.normalized = false;
cudaBindTextureToArray(gT_par3DVolumeTexture, array, channelDesc);
// TODO: error value?
return true;
}
// threadIdx: x = u detector
// y = relative angle
// blockIdx: x = u/v detector
// y = angle block
#define PAR3D_FP_BODY(c0,c1,c2) \
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \
if (angle >= endAngle) \
return; \
\
const float fRayX = gC_RayX[angle]; \
const float fRayY = gC_RayY[angle]; \
const float fRayZ = gC_RayZ[angle]; \
const float fDetUX = gC_DetUX[angle]; \
const float fDetUY = gC_DetUY[angle]; \
const float fDetUZ = gC_DetUZ[angle]; \
const float fDetVX = gC_DetVX[angle]; \
const float fDetVY = gC_DetVY[angle]; \
const float fDetVZ = gC_DetVZ[angle]; \
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \
\
\
\
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \
int endDetectorV = startDetectorV + g_detBlockV; \
if (endDetectorV > dims.iProjV) \
endDetectorV = dims.iProjV; \
\
int endSlice = startSlice + g_blockSlices; \
if (endSlice > dims.iVol##c0) \
endSlice = dims.iVol##c0; \
\
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \
{ \
/* Trace ray in direction Ray to (detectorU,detectorV) from */ \
/* X = startSlice to X = endSlice */ \
\
const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX; \
const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY; \
const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ; \
\
/* (x) ( 1) ( 0) */ \
/* ray: (y) = (ay) * x + (by) */ \
/* (z) (az) (bz) */ \
\
const float a##c1 = fRay##c1 / fRay##c0; \
const float a##c2 = fRay##c2 / fRay##c0; \
const float b##c1 = fDet##c1 - a##c1 * fDet##c0; \
const float b##c2 = fDet##c2 - a##c2 * fDet##c0; \
\
const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \
\
float fVal = 0.0f; \
\
float f##c0 = startSlice + 0.5f; \
float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 0.5f;\
float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 0.5f;\
\
for (int s = startSlice; s < endSlice; ++s) \
{ \
fVal += tex3D(gT_par3DVolumeTexture, fX, fY, fZ); \
f##c0 += 1.0f; \
f##c1 += a##c1; \
f##c2 += a##c2; \
} \
\
fVal *= fDistCorr; \
\
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal; \
}
// Supersampling version
#define PAR3D_FP_SS_BODY(c0,c1,c2) \
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \
if (angle >= endAngle) \
return; \
\
const float fRayX = gC_RayX[angle]; \
const float fRayY = gC_RayY[angle]; \
const float fRayZ = gC_RayZ[angle]; \
const float fDetUX = gC_DetUX[angle]; \
const float fDetUY = gC_DetUY[angle]; \
const float fDetUZ = gC_DetUZ[angle]; \
const float fDetVX = gC_DetVX[angle]; \
const float fDetVY = gC_DetVY[angle]; \
const float fDetVZ = gC_DetVZ[angle]; \
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \
\
\
\
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \
int endDetectorV = startDetectorV + g_detBlockV; \
if (endDetectorV > dims.iProjV) \
endDetectorV = dims.iProjV; \
\
int endSlice = startSlice + g_blockSlices; \
if (endSlice > dims.iVol##c0) \
endSlice = dims.iVol##c0; \
\
const float fSubStep = 1.0f/dims.iRaysPerDetDim; \
\
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \
{ \
\
float fV = 0.0f; \
\
float fdU = detectorU - 0.5f + 0.5f*fSubStep; \
for (int iSubU = 0; iSubU < dims.iRaysPerDetDim; ++iSubU, fdU+=fSubStep) { \
float fdV = detectorV - 0.5f + 0.5f*fSubStep; \
for (int iSubV = 0; iSubV < dims.iRaysPerDetDim; ++iSubV, fdV+=fSubStep) { \
\
/* Trace ray in direction Ray to (detectorU,detectorV) from */ \
/* X = startSlice to X = endSlice */ \
\
const float fDetX = fDetSX + fdU*fDetUX + fdV*fDetVX; \
const float fDetY = fDetSY + fdU*fDetUY + fdV*fDetVY; \
const float fDetZ = fDetSZ + fdU*fDetUZ + fdV*fDetVZ; \
\
/* (x) ( 1) ( 0) */ \
/* ray: (y) = (ay) * x + (by) */ \
/* (z) (az) (bz) */ \
\
const float a##c1 = fRay##c1 / fRay##c0; \
const float a##c2 = fRay##c2 / fRay##c0; \
const float b##c1 = fDet##c1 - a##c1 * fDet##c0; \
const float b##c2 = fDet##c2 - a##c2 * fDet##c0; \
\
const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \
\
float fVal = 0.0f; \
\
float f##c0 = startSlice + 0.5f; \
float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 0.5f;\
float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 0.5f;\
\
for (int s = startSlice; s < endSlice; ++s) \
{ \
fVal += tex3D(gT_par3DVolumeTexture, fX, fY, fZ); \
f##c0 += 1.0f; \
f##c1 += a##c1; \
f##c2 += a##c2; \
} \
\
fVal *= fDistCorr; \
fV += fVal; \
\
} \
} \
\
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fV / (dims.iRaysPerDetDim * dims.iRaysPerDetDim);\
}
__global__ void par3D_FP_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_BODY(X,Y,Z)
}
__global__ void par3D_FP_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_BODY(Y,X,Z)
}
__global__ void par3D_FP_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_BODY(Z,X,Y)
}
__global__ void par3D_FP_SS_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SS_BODY(X,Y,Z)
}
__global__ void par3D_FP_SS_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SS_BODY(Y,X,Z)
}
__global__ void par3D_FP_SS_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SS_BODY(Z,X,Y)
}
__device__ float dirWeights(float fX, float fN) {
if (fX <= -0.5f) // outside image on left
return 0.0f;
if (fX <= 0.5f) // half outside image on left
return (fX + 0.5f) * (fX + 0.5f);
if (fX <= fN - 0.5f) { // inside image
float t = fX + 0.5f - floorf(fX + 0.5f);
return t*t + (1-t)*(1-t);
}
if (fX <= fN + 0.5f) // half outside image on right
return (fN + 0.5f - fX) * (fN + 0.5f - fX);
return 0.0f; // outside image on right
}
#define PAR3D_FP_SUMSQW_BODY(c0,c1,c2) \
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \
if (angle >= endAngle) \
return; \
\
const float fRayX = gC_RayX[angle]; \
const float fRayY = gC_RayY[angle]; \
const float fRayZ = gC_RayZ[angle]; \
const float fDetUX = gC_DetUX[angle]; \
const float fDetUY = gC_DetUY[angle]; \
const float fDetUZ = gC_DetUZ[angle]; \
const float fDetVX = gC_DetVX[angle]; \
const float fDetVY = gC_DetVY[angle]; \
const float fDetVZ = gC_DetVZ[angle]; \
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \
\
\
\
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \
int endDetectorV = startDetectorV + g_detBlockV; \
if (endDetectorV > dims.iProjV) \
endDetectorV = dims.iProjV; \
\
int endSlice = startSlice + g_blockSlices; \
if (endSlice > dims.iVol##c0) \
endSlice = dims.iVol##c0; \
\
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \
{ \
/* Trace ray in direction Ray to (detectorU,detectorV) from */ \
/* X = startSlice to X = endSlice */ \
\
const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX; \
const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY; \
const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ; \
\
/* (x) ( 1) ( 0) */ \
/* ray: (y) = (ay) * x + (by) */ \
/* (z) (az) (bz) */ \
\
const float a##c1 = fRay##c1 / fRay##c0; \
const float a##c2 = fRay##c2 / fRay##c0; \
const float b##c1 = fDet##c1 - a##c1 * fDet##c0; \
const float b##c2 = fDet##c2 - a##c2 * fDet##c0; \
\
const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \
\
float fVal = 0.0f; \
\
float f##c0 = startSlice + 0.5f; \
float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 0.5f;\
float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 0.5f;\
\
for (int s = startSlice; s < endSlice; ++s) \
{ \
fVal += dirWeights(f##c1, dims.iVol##c1) * dirWeights(f##c2, dims.iVol##c2) * fDistCorr * fDistCorr; \
f##c0 += 1.0f; \
f##c1 += a##c1; \
f##c2 += a##c2; \
} \
\
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal; \
}
// Supersampling version
// TODO
__global__ void par3D_FP_SumSqW_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SUMSQW_BODY(X,Y,Z)
}
__global__ void par3D_FP_SumSqW_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SUMSQW_BODY(Y,X,Z)
}
__global__ void par3D_FP_SumSqW_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
PAR3D_FP_SUMSQW_BODY(Z,X,Y)
}
bool Par3DFP_Array(cudaArray *D_volArray,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SPar3DProjection* angles,
float fOutputScale)
{
bindVolumeDataTexture(D_volArray);
// transfer angles to constant memory
float* tmp = new float[dims.iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(RayX);
TRANSFER_TO_CONSTANT(RayY);
TRANSFER_TO_CONSTANT(RayZ);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetSZ);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
TRANSFER_TO_CONSTANT(DetUZ);
TRANSFER_TO_CONSTANT(DetVX);
TRANSFER_TO_CONSTANT(DetVY);
TRANSFER_TO_CONSTANT(DetVZ);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
std::list streams;
dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
int blockDirection = 0;
// timeval t;
// tic(t);
for (unsigned int a = 0; a <= dims.iProjAngles; ++a) {
int dir;
if (a != dims.iProjAngles) {
float dX = fabsf(angles[a].fRayX);
float dY = fabsf(angles[a].fRayY);
float dZ = fabsf(angles[a].fRayZ);
if (dX >= dY && dX >= dZ)
dir = 0;
else if (dY >= dX && dY >= dZ)
dir = 1;
else
dir = 2;
}
if (a == dims.iProjAngles || dir != blockDirection) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid(
((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock);
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
// printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y);
if (blockDirection == 0) {
for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
par3D_FP_SS_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
} else if (blockDirection == 1) {
for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
par3D_FP_SS_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
} else if (blockDirection == 2) {
for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
par3D_FP_SS_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
}
}
blockDirection = dir;
blockStart = a;
}
}
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaTextForceKernelsCompletion();
// printf("%f\n", toc(t));
return true;
}
bool Par3DFP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SPar3DProjection* angles,
float fOutputScale)
{
// transfer volume to array
cudaArray* cuArray = allocateVolumeArray(dims);
transferVolumeToArray(D_volumeData, cuArray, dims);
bool ret = Par3DFP_Array(cuArray, D_projData, dims, angles, fOutputScale);
cudaFreeArray(cuArray);
return ret;
}
bool Par3DFP_SumSqW(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SPar3DProjection* angles,
float fOutputScale)
{
// transfer angles to constant memory
float* tmp = new float[dims.iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(RayX);
TRANSFER_TO_CONSTANT(RayY);
TRANSFER_TO_CONSTANT(RayZ);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetSZ);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
TRANSFER_TO_CONSTANT(DetUZ);
TRANSFER_TO_CONSTANT(DetVX);
TRANSFER_TO_CONSTANT(DetVY);
TRANSFER_TO_CONSTANT(DetVZ);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
std::list streams;
dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
int blockDirection = 0;
// timeval t;
// tic(t);
for (unsigned int a = 0; a <= dims.iProjAngles; ++a) {
int dir;
if (a != dims.iProjAngles) {
float dX = fabsf(angles[a].fRayX);
float dY = fabsf(angles[a].fRayY);
float dZ = fabsf(angles[a].fRayZ);
if (dX >= dY && dX >= dZ)
dir = 0;
else if (dY >= dX && dY >= dZ)
dir = 1;
else
dir = 2;
}
if (a == dims.iProjAngles || dir != blockDirection) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid(
((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock);
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
// printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y);
if (blockDirection == 0) {
for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_SumSqW_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
#if 0
par3D_FP_SS_SumSqW_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
#else
assert(false);
#endif
} else if (blockDirection == 1) {
for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_SumSqW_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
#if 0
par3D_FP_SS_SumSqW_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
#else
assert(false);
#endif
} else if (blockDirection == 2) {
for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
par3D_FP_SumSqW_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
#if 0
par3D_FP_SS_SumSqW_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
#else
assert(false);
#endif
}
}
blockDirection = dir;
blockStart = a;
}
}
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaTextForceKernelsCompletion();
// printf("%f\n", toc(t));
return true;
}
}
#ifdef STANDALONE
using namespace astraCUDA3d;
int main()
{
cudaSetDevice(1);
SDimensions3D dims;
dims.iVolX = 500;
dims.iVolY = 500;
dims.iVolZ = 81;
dims.iProjAngles = 241;
dims.iProjU = 600;
dims.iProjV = 100;
dims.iRaysPerDet = 1;
SPar3DProjection base;
base.fRayX = 1.0f;
base.fRayY = 0.0f;
base.fRayZ = 0.1f;
base.fDetSX = 0.0f;
base.fDetSY = -300.0f;
base.fDetSZ = -50.0f;
base.fDetUX = 0.0f;
base.fDetUY = 1.0f;
base.fDetUZ = 0.0f;
base.fDetVX = 0.0f;
base.fDetVY = 0.0f;
base.fDetVZ = 1.0f;
SPar3DProjection angle[dims.iProjAngles];
cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
volData = allocateVolumeData(dims);
cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
projData = allocateProjectionData(dims);
unsigned int ix = 500,iy = 500;
float* buf = new float[dims.iProjU*dims.iProjV];
float* slice = new float[dims.iVolX*dims.iVolY];
for (int i = 0; i < dims.iVolX*dims.iVolY; ++i)
slice[i] = 1.0f;
for (unsigned int a = 0; a < 241; a += dims.iProjAngles) {
zeroProjectionData(projData, dims);
for (int y = 0; y < iy; y += dims.iVolY) {
for (int x = 0; x < ix; x += dims.iVolX) {
timeval st;
tic(st);
for (int z = 0; z < dims.iVolZ; ++z) {
// char sfn[256];
// sprintf(sfn, "/home/wpalenst/projects/cone_simulation/phantom_4096/mouse_fem_phantom_%04d.png", 30+z);
// float* slice = loadSubImage(sfn, x, y, dims.iVolX, dims.iVolY);
cudaPitchedPtr ptr;
ptr.ptr = slice;
ptr.pitch = dims.iVolX*sizeof(float);
ptr.xsize = dims.iVolX*sizeof(float);
ptr.ysize = dims.iVolY;
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, z };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaError err = cudaMemcpy3D(&p);
assert(!err);
// delete[] slice;
}
printf("Load: %f\n", toc(st));
#if 0
cudaPos zp = { 0, 0, 0 };
cudaPitchedPtr t;
t.ptr = new float[1024*1024];
t.pitch = 1024*4;
t.xsize = 1024*4;
t.ysize = 1024;
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = zp;
p.srcPtr = volData;
p.extent = extentS;
p.dstArray = 0;
p.dstPtr = t;
p.dstPos = zp;
p.kind = cudaMemcpyDeviceToHost;
cudaError err = cudaMemcpy3D(&p);
assert(!err);
char fn[32];
sprintf(fn, "t%d%d.png", x / dims.iVolX, y / dims.iVolY);
saveImage(fn, 1024, 1024, (float*)t.ptr);
saveImage("s.png", 4096, 4096, slice);
delete[] (float*)t.ptr;
#endif
#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = base.f##name##X * cos(alpha) - base.f##name##Y * sin(alpha); angle[i].f##name##Y = base.f##name##X * sin(alpha) + base.f##name##Y * cos(alpha); angle[i].f##name##Z = base.f##name##Z; } while(0)
#define SHIFT(name,i,x,y) do { angle[i].f##name##X += x; angle[i].f##name##Y += y; } while(0)
for (int i = 0; i < dims.iProjAngles; ++i) {
ROTATE0(Ray, i, (a+i)*.8*M_PI/180);
ROTATE0(DetS, i, (a+i)*.8*M_PI/180);
ROTATE0(DetU, i, (a+i)*.8*M_PI/180);
ROTATE0(DetV, i, (a+i)*.8*M_PI/180);
// SHIFT(Src, i, (-x+1536), (-y+1536));
// SHIFT(DetS, i, (-x+1536), (-y+1536));
}
#undef ROTATE0
#undef SHIFT
tic(st);
astraCUDA3d::Par3DFP(volData, projData, dims, angle, 1.0f);
printf("FP: %f\n", toc(st));
}
}
for (unsigned int aa = 0; aa < dims.iProjAngles; ++aa) {
for (unsigned int v = 0; v < dims.iProjV; ++v)
cudaMemcpy(buf+v*dims.iProjU, ((float*)projData.ptr)+(v*dims.iProjAngles+aa)*(projData.pitch/sizeof(float)), dims.iProjU*sizeof(float), cudaMemcpyDeviceToHost);
char fname[32];
sprintf(fname, "proj%03d.png", a+aa);
saveImage(fname, dims.iProjV, dims.iProjU, buf, 0.0f, 1000.0f);
}
}
delete[] buf;
}
#endif