/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #define policy_weight(p,rayindex,volindex,weight) do { if (p.pixelPrior(volindex)) { p.addWeight(rayindex, volindex, weight); p.pixelPosterior(volindex); } } while (false) template void CParallelBeamLinearKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamLinearKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamLinearKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- /* PROJECT BLOCK - vector projection geometry Kernel limitations: isotropic pixels (PixelLengthX == PixelLengthY) For each angle/detector pair: Let D=(Dx,Dy) denote the centre of the detector (point) in volume coordinates, and let R=(Rx,Ry) denote the direction of the ray (vector). For mainly vertical rays (|Rx|<=|Ry|), let E=(Ex,Ey) denote the centre of the most upper left pixel: E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), and let F=(Fx,Fy) denote a vector to the next pixel F = (PixelLengthX, 0) The intersection of the ray (D+aR) with the centre line of the upper row of pixels (E+bF) is { Dx + a*Rx = Ex + b*Fx { Dy + a*Ry = Ey + b*Fy Solving for (a,b) results in: a = (Ey + b*Fy - Dy)/Ry = (Ey - Dy)/Ry b = (Dx + a*Rx - Ex)/Fx = (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx Define c as the x-value of the intersection of the ray with the upper row in pixel coordinates. c = b The intersection of the ray (D+aR) with the centre line of the second row of pixels (E'+bF) with E'=(WindowMinX + PixelLengthX/2, WindowMaxY - 3*PixelLengthY/2) expressed in x-value pixel coordinates is c' = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx. And thus: deltac = c' - c = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx - (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx = [(Ey' - Dy)*Rx/Ry - (Ey - Dy)*Rx/Ry]/Fx = [Ey' - Ey]*(Rx/Ry)/Fx = [Ey' - Ey]*(Rx/Ry)/Fx = -PixelLengthY*(Rx/Ry)/Fx. Given c on a certain row, its pixel directly on its left (col), and the distance (offset) to it, can be found: col = floor(c) offset = c - col The index of this pixel is volumeIndex = row * colCount + col The projection kernel is defined by LengthPerRow /|\ / | \ __/ | \__ 0 p0 p1 p2 And thus W_(rayIndex,volIndex) = (1 - offset) * lengthPerRow W_(rayIndex,volIndex+1) = offset * lengthPerRow Mainly horizontal rays (|Rx|<=|Ry|) are handled in a similar fashion: E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), F = (0, -PixelLengthX) a = (Ex + b*Fx - Dx)/Rx = (Ex - Dx)/Rx b = (Dy + a*Ry - Ey)/Fy = (Dy + (Ex - Dx)*Ry/Rx - Ey)/Fy r = b deltar = PixelLengthX*(Ry/Rx)/Fy. row = floor(r+1/2) offset = r - row LengthPerCol = pixelLengthY * sqrt(Rx^2+Ry^2) / |Rx| W_(rayIndex,volIndex) = (1 - offset) * lengthPerCol W_(rayIndex,volIndex+colcount) = offset * lengthPerCol */ template void CParallelBeamLinearKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // get vector geometry const CParallelVecProjectionGeometry2D* pVecProjectionGeometry; if (dynamic_cast(m_pProjectionGeometry)) { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry)->toVectorGeometry(); } else { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); } // precomputations const float32 pixelLengthX = m_pVolumeGeometry->getPixelLengthX(); const float32 pixelLengthY = m_pVolumeGeometry->getPixelLengthY(); const float32 inv_pixelLengthX = 1.0f / pixelLengthX; const float32 inv_pixelLengthY = 1.0f / pixelLengthY; const int colCount = m_pVolumeGeometry->getGridColCount(); const int rowCount = m_pVolumeGeometry->getGridRowCount(); // loop angles for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // variables float32 Dx, Dy, Ex, Ey, c, r, deltac, deltar, offset; float32 RxOverRy, RyOverRx, lengthPerRow, lengthPerCol; int iVolumeIndex, iRayIndex, row, col, iDetector; const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; float32 detSize = sqrt(proj->fDetUX * proj->fDetUX + proj->fDetUY * proj->fDetUY); const bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); if (vertical) { RxOverRy = proj->fRayX/proj->fRayY; lengthPerRow = detSize * m_pVolumeGeometry->getPixelLengthX() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayY); deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX; } else { RyOverRx = proj->fRayY/proj->fRayX; lengthPerCol = detSize * m_pVolumeGeometry->getPixelLengthY() * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / abs(proj->fRayX); deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY; } Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f; Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f; // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; Dx = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX; Dy = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY; bool isin = false; // vertically if (vertical) { // calculate c for row 0 c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX; // loop rows for (row = 0; row < rowCount; ++row, c += deltac) { col = int(floor(c)); if (col < -1 || col >= colCount) { if (!isin) continue; else break; } offset = c - float32(col); iVolumeIndex = row * colCount + col; if (col >= 0) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - offset) * lengthPerRow); } iVolumeIndex++; if (col + 1 < colCount) { policy_weight(p, iRayIndex, iVolumeIndex, offset * lengthPerRow); } isin = true; } } // horizontally else { // calculate r for col 0 r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY; // loop columns for (col = 0; col < colCount; ++col, r += deltar) { row = int(floor(r)); if (row < -1 || row >= rowCount) { if (!isin) continue; else break; } offset = r - float32(row); iVolumeIndex = row * colCount + col; if (row >= 0) { policy_weight(p, iRayIndex, iVolumeIndex, (1.0f - offset) * lengthPerCol); } iVolumeIndex += colCount; if (row + 1 < rowCount) { policy_weight(p, iRayIndex, iVolumeIndex, offset * lengthPerCol); } isin = true; } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles if (dynamic_cast(m_pProjectionGeometry)) delete pVecProjectionGeometry; }