# ----------------------------------------------------------------------- # Copyright: 2010-2018, iMinds-Vision Lab, University of Antwerp # 2013-2018, CWI, Amsterdam # # Contact: astra@astra-toolbox.com # Website: http://www.astra-toolbox.com/ # # This file is part of the ASTRA Toolbox. # # # The ASTRA Toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # The ASTRA Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the ASTRA Toolbox. If not, see . # # ----------------------------------------------------------------------- import astra import numpy as np import six class CGLSPlugin(astra.plugin.base): """CGLS.""" astra_name = "CGLS-PLUGIN" def initialize(self,cfg): self.W = astra.OpTomo(cfg['ProjectorId']) self.vid = cfg['ReconstructionDataId'] self.sid = cfg['ProjectionDataId'] try: v = astra.data2d.get_shared(self.vid) s = astra.data2d.get_shared(self.sid) self.data_mod = astra.data2d except Exception: v = astra.data3d.get_shared(self.vid) s = astra.data3d.get_shared(self.sid) self.data_mod = astra.data3d def run(self, its): v = self.data_mod.get_shared(self.vid) s = self.data_mod.get_shared(self.sid) z = np.zeros(v.shape, dtype=np.float32) p = np.zeros(v.shape, dtype=np.float32) r = np.zeros(s.shape, dtype=np.float32) w = np.zeros(s.shape, dtype=np.float32) W = self.W # r = s - W*v W.FP(v, out=w) r[:] = s r -= w # p = W'*r W.BP(r, out=p) # gamma = gamma = np.dot(p.ravel(), p.ravel()) for i in range(its): # w = W * p W.FP(p, out=w) # alpha = gamma / alpha = gamma / np.dot(w.ravel(), w.ravel()) # v += alpha * p z[:] = p z *= alpha v += z # r -= alpha * w w *= -alpha; r += w # z = W' * r W.BP(r, out=z) # beta = / gamma newgamma = np.dot(z.ravel(), z.ravel()) beta = newgamma / gamma # gamma = gamma = newgamma # p = z + beta * p p *= beta p += z