/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include "astra/CudaForwardProjectionAlgorithm.h"
#ifdef ASTRA_CUDA
#include "../cuda/2d/astra.h"
#include
#include
#include
#include "astra/AstraObjectManager.h"
#include "astra/FanFlatProjectionGeometry2D.h"
#include "astra/FanFlatVecProjectionGeometry2D.h"
#include "astra/CudaProjector2D.h"
using namespace std;
namespace astra {
// type of the algorithm, needed to register with CAlgorithmFactory
std::string CCudaForwardProjectionAlgorithm::type = "FP_CUDA";
//----------------------------------------------------------------------------------------
// Constructor
CCudaForwardProjectionAlgorithm::CCudaForwardProjectionAlgorithm()
{
m_bIsInitialized = false;
}
//----------------------------------------------------------------------------------------
// Destructor
CCudaForwardProjectionAlgorithm::~CCudaForwardProjectionAlgorithm()
{
}
//---------------------------------------------------------------------------------------
// Initialize - Config
bool CCudaForwardProjectionAlgorithm::initialize(const Config& _cfg)
{
ASTRA_ASSERT(_cfg.self);
ConfigStackCheck CC("CudaForwardProjectionAlgorithm", this, _cfg);
// sinogram data
XMLNode* node = _cfg.self->getSingleNode("ProjectionDataId");
ASTRA_CONFIG_CHECK(node, "FP_CUDA", "No ProjectionDataId tag specified.");
int id = boost::lexical_cast(node->getContent());
m_pSinogram = dynamic_cast(CData2DManager::getSingleton().get(id));
ASTRA_DELETE(node);
CC.markNodeParsed("ProjectionDataId");
// volume data
node = _cfg.self->getSingleNode("VolumeDataId");
ASTRA_CONFIG_CHECK(node, "FP_CUDA", "No VolumeDataId tag specified.");
id = boost::lexical_cast(node->getContent());
m_pVolume = dynamic_cast(CData2DManager::getSingleton().get(id));
ASTRA_DELETE(node);
CC.markNodeParsed("VolumeDataId");
// GPU number
m_iGPUIndex = (int)_cfg.self->getOptionNumerical("GPUindex", -1);
m_iGPUIndex = (int)_cfg.self->getOptionNumerical("GPUIndex", m_iGPUIndex);
CC.markOptionParsed("GPUindex");
if (!_cfg.self->hasOption("GPUindex"))
CC.markOptionParsed("GPUIndex");
// Detector supersampling factor
m_iDetectorSuperSampling = (int)_cfg.self->getOptionNumerical("DetectorSuperSampling", 1);
CC.markOptionParsed("DetectorSuperSampling");
// This isn't used yet, but passing it is not something to warn about
node = _cfg.self->getSingleNode("ProjectorId");
if (node) {
id = boost::lexical_cast(node->getContent());
CProjector2D *projector = CProjector2DManager::getSingleton().get(id);
if (!dynamic_cast(projector)) {
cout << "Warning: non-CUDA Projector2D passed to FP_CUDA" << std::endl;
}
delete node;
}
CC.markNodeParsed("ProjectorId");
// return success
return check();
}
//----------------------------------------------------------------------------------------
// Initialize - C++
bool CCudaForwardProjectionAlgorithm::initialize(CProjectionGeometry2D* _pProjectionGeometry,
CVolumeGeometry2D* _pReconstructionGeometry,
CFloat32VolumeData2D* _pVolume,
CFloat32ProjectionData2D* _pSinogram,
int _iGPUindex, int _iDetectorSuperSampling)
{
// store classes
//m_pProjectionGeometry = _pProjectionGeometry;
//m_pReconstructionGeometry = _pReconstructionGeometry;
m_pVolume = _pVolume;
m_pSinogram = _pSinogram;
m_iDetectorSuperSampling = _iDetectorSuperSampling;
m_iGPUIndex = _iGPUindex;
// return success
return check();
}
//----------------------------------------------------------------------------------------
// Check
bool CCudaForwardProjectionAlgorithm::check()
{
// check pointers
ASTRA_CONFIG_CHECK(m_pSinogram, "FP_CUDA", "No valid projection data object found.");
ASTRA_CONFIG_CHECK(m_pSinogram->isInitialized(), "FP_CUDA", "Projection data not initialized.");
ASTRA_CONFIG_CHECK(m_pVolume, "FP_CUDA", "No valid volume data object found.");
ASTRA_CONFIG_CHECK(m_pVolume->isInitialized(), "FP_CUDA", "Volume data not initialized.");
// check restrictions
//int iImageSideBlocks = m_pReconstructionGeometry->getGridColCount() / G_BLOCKIMAGESIZE;
//ASTRA_CONFIG_CHECK((iImageSideBlocks * G_BLOCKIMAGESIZE) == m_pVolume->getWidth(), "FP_CUDA", "Volume Width must be a multiple of G_BLOCKIMAGESIZE");
//ASTRA_CONFIG_CHECK((iImageSideBlocks * G_BLOCKIMAGESIZE) == m_pVolume->getHeight(), "FP_CUDA", "Volume Height must be a multiple of G_BLOCKIMAGESIZE");
//ASTRA_CONFIG_CHECK(m_pProjectionGeometry->getDetectorCount() == (m_pVolume->getWidth() * 3 / 2), "SIRT_CUDA", "Number of detectors must be 1.5 times the width of the image");
ASTRA_CONFIG_CHECK(m_iGPUIndex >= -1, "FP_CUDA", "GPUIndex must be a non-negative integer.");
// success
m_bIsInitialized = true;
return true;
}
void CCudaForwardProjectionAlgorithm::setGPUIndex(int _iGPUIndex)
{
m_iGPUIndex = _iGPUIndex;
}
//---------------------------------------------------------------------------------------
// Information - All
map CCudaForwardProjectionAlgorithm::getInformation()
{
map res;
res["ProjectionGeometry"] = getInformation("ProjectionGeometry");
res["ReconstructionGeometry"] = getInformation("ReconstructionGeometry");
res["ProjectionDataId"] = getInformation("ProjectionDataId");
res["VolumeDataId"] = getInformation("VolumeDataId");
res["GPUindex"] = getInformation("GPUindex");
res["DetectorSuperSampling"] = getInformation("DetectorSuperSampling");
return mergeMap(CAlgorithm::getInformation(), res);
};
//---------------------------------------------------------------------------------------
// Information - Specific
boost::any CCudaForwardProjectionAlgorithm::getInformation(std::string _sIdentifier)
{
if (_sIdentifier == "ProjectionGeometry") { return string("not implemented"); }
if (_sIdentifier == "ReconstructionGeometry") { return string("not implemented"); }
if (_sIdentifier == "ProjectionDataId") {
int iIndex = CData2DManager::getSingleton().getIndex(m_pSinogram);
if (iIndex != 0) return iIndex;
return std::string("not in manager");
}
if (_sIdentifier == "VolumeDataId") {
int iIndex = CData2DManager::getSingleton().getIndex(m_pVolume);
if (iIndex != 0) return iIndex;
return std::string("not in manager");
}
if (_sIdentifier == "GPUindex") { return m_iGPUIndex; }
if (_sIdentifier == "DetectorSuperSampling") { return m_iDetectorSuperSampling; }
return CAlgorithm::getInformation(_sIdentifier);
};
//----------------------------------------------------------------------------------------
// Run
void CCudaForwardProjectionAlgorithm::run(int)
{
// check initialized
assert(m_bIsInitialized);
CVolumeGeometry2D* pVolGeom = m_pVolume->getGeometry();
const CParallelProjectionGeometry2D* parProjGeom = dynamic_cast(m_pSinogram->getGeometry());
const CFanFlatProjectionGeometry2D* fanProjGeom = dynamic_cast(m_pSinogram->getGeometry());
const CFanFlatVecProjectionGeometry2D* fanVecProjGeom = dynamic_cast(m_pSinogram->getGeometry());
bool ok = false;
if (parProjGeom) {
ok = astraCudaFP(m_pVolume->getDataConst(), m_pSinogram->getData(),
pVolGeom->getGridColCount(), pVolGeom->getGridRowCount(),
parProjGeom->getProjectionAngleCount(),
parProjGeom->getDetectorCount(),
parProjGeom->getProjectionAngles(),
parProjGeom->getExtraDetectorOffset(), parProjGeom->getDetectorWidth() / pVolGeom->getPixelLengthX(),
m_iDetectorSuperSampling, m_iGPUIndex);
} else if (fanProjGeom) {
ok = astraCudaFanFP(m_pVolume->getDataConst(), m_pSinogram->getData(),
pVolGeom->getGridColCount(), pVolGeom->getGridRowCount(),
fanProjGeom->getProjectionAngleCount(),
fanProjGeom->getDetectorCount(),
fanProjGeom->getProjectionAngles(),
fanProjGeom->getOriginSourceDistance(),
fanProjGeom->getOriginDetectorDistance(),
pVolGeom->getPixelLengthX(),
fanProjGeom->getDetectorWidth(),
m_iDetectorSuperSampling, m_iGPUIndex);
} else if (fanVecProjGeom) {
// Rescale projs to fPixelSize == 1
float fPixelSize = pVolGeom->getPixelLengthX();
const astraCUDA::SFanProjection* projs;
projs = fanVecProjGeom->getProjectionVectors();
astraCUDA::SFanProjection* scaledProjs = new astraCUDA::SFanProjection[fanVecProjGeom->getProjectionAngleCount()];
#define SCALE(name,i,alpha) do { scaledProjs[i].f##name##X = projs[i].f##name##X * alpha; scaledProjs[i].f##name##Y = projs[i].f##name##Y * alpha; } while (0)
for (unsigned int i = 0; i < fanVecProjGeom->getProjectionAngleCount(); ++i) {
SCALE(Src,i,1.0f/fPixelSize);
SCALE(DetS,i,1.0f/fPixelSize);
SCALE(DetU,i,1.0f/fPixelSize);
}
ok = astraCudaFanFP(m_pVolume->getDataConst(), m_pSinogram->getData(),
pVolGeom->getGridColCount(), pVolGeom->getGridRowCount(),
fanVecProjGeom->getProjectionAngleCount(),
fanVecProjGeom->getDetectorCount(),
scaledProjs,
/* 1.0f / pVolGeom->getPixelLengthX(), */
m_iDetectorSuperSampling, m_iGPUIndex);
delete[] scaledProjs;
} else {
ASTRA_ASSERT(false);
}
ASTRA_ASSERT(ok);
}
} // namespace astra
#endif // ASTRA_CUDA