/*
-----------------------------------------------------------------------
Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp
2014-2016, CWI, Amsterdam
Contact: astra@uantwerpen.be
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#define BOOST_TEST_DYN_LINK
#include
#include
#include
#include "astra/ParallelBeamLineKernelProjector2D.h"
#include "astra/ParallelBeamLinearKernelProjector2D.h"
#include "astra/ParallelBeamStripKernelProjector2D.h"
#include "astra/ParallelProjectionGeometry2D.h"
#include "astra/VolumeGeometry2D.h"
#include "astra/ProjectionGeometry2D.h"
#include
using astra::float32;
struct TestParallelBeamLinearKernelProjector2D {
TestParallelBeamLinearKernelProjector2D()
{
astra::float32 angles[] = { 2.6f };
BOOST_REQUIRE( projGeom.initialize(1, 3, 1.0f, angles) );
BOOST_REQUIRE( volGeom.initialize(3, 2) );
BOOST_REQUIRE( proj.initialize(&projGeom, &volGeom) );
}
~TestParallelBeamLinearKernelProjector2D()
{
}
astra::CParallelBeamLinearKernelProjector2D proj;
astra::CParallelProjectionGeometry2D projGeom;
astra::CVolumeGeometry2D volGeom;
};
BOOST_FIXTURE_TEST_CASE( testParallelBeamLinearKernelProjector2D_General, TestParallelBeamLinearKernelProjector2D )
{
}
// Compute linear kernel for a single volume pixel/detector pixel combination
float32 compute_linear_kernel(const astra::CProjectionGeometry2D& projgeom, const astra::CVolumeGeometry2D& volgeom,
int iX, int iY, int iDet, float32 fAngle)
{
// projection of center of volume pixel on detector array
float32 fDetProj = (iX - (volgeom.getGridColCount()-1.0f)/2.0f ) * volgeom.getPixelLengthX() * cos(fAngle) - (iY - (volgeom.getGridRowCount()-1.0f)/2.0f ) * volgeom.getPixelLengthY() * sin(fAngle);
// start of detector pixel on detector array
float32 fDetStart = projgeom.indexToDetectorOffset(iDet) - 0.5f;
// printf("(%d,%d,%d): %f in (%f,%f)\n", iX,iY,iDet,fDetProj, fDetStart, fDetStart+1.0f);
// projection of center of next volume pixel on detector array
float32 fDetStep;
// length of projection ray through volume pixel
float32 fWeight;
if (fabs(cos(fAngle)) > fabs(sin(fAngle))) {
fDetStep = volgeom.getPixelLengthY() * fabs(cos(fAngle));
fWeight = volgeom.getPixelLengthX() * 1.0f / fabs(cos(fAngle));
} else {
fDetStep = volgeom.getPixelLengthX() * fabs(sin(fAngle));
fWeight = volgeom.getPixelLengthY() * 1.0f / fabs(sin(fAngle));
}
// printf("step: %f\n weight: %f\n", fDetStep, fWeight);
// center of detector pixel on detector array
float32 fDetCenter = fDetStart + 0.5f;
// unweighted contribution of this volume pixel:
// linear interpolation between
// fDetCenter - fDetStep |---> 0
// fDetCenter |---> 1
// fDetCenter + fDetStep |---> 0
float32 fBase;
if (fDetCenter <= fDetProj) {
fBase = (fDetCenter - (fDetProj - fDetStep))/fDetStep;
} else {
fBase = ((fDetProj + fDetStep) - fDetCenter)/fDetStep;
}
// printf("base: %f\n", fBase);
if (fBase < 0) fBase = 0;
return fBase * fWeight;
}
BOOST_AUTO_TEST_CASE( testParallelBeamLinearKernelProjector2D_Rectangles )
{
astra::CParallelBeamLinearKernelProjector2D proj;
astra::CParallelProjectionGeometry2D projGeom;
astra::CVolumeGeometry2D volGeom;
const unsigned int iRandomTestCount = 100;
unsigned int iSeed = time(0);
srand(iSeed);
for (unsigned int iTest = 0; iTest < iRandomTestCount; ++iTest) {
int iDetectorCount = 1 + (rand() % 100);
int iRows = 1 + (rand() % 100);
int iCols = 1 + (rand() % 100);
astra::float32 angles[] = { rand() * 2.0f*astra::PI / RAND_MAX };
projGeom.initialize(1, iDetectorCount, 0.8f, angles);
volGeom.initialize(iCols, iRows);
proj.initialize(&projGeom, &volGeom);
int iMax = proj.getProjectionWeightsCount(0);
BOOST_REQUIRE(iMax > 0);
astra::SPixelWeight* pPix = new astra::SPixelWeight[iMax];
BOOST_REQUIRE(pPix);
astra::float32 fWeight = 0;
for (int iDet = 0; iDet < projGeom.getDetectorCount(); ++iDet) {
int iCount;
proj.computeSingleRayWeights(0, iDet, pPix, iMax, iCount);
BOOST_REQUIRE(iCount <= iMax);
astra::float32 fW = 0;
for (int i = 0; i < iCount; ++i) {
float32 fTest = compute_linear_kernel(
projGeom,
volGeom,
pPix[i].m_iIndex % volGeom.getGridColCount(),
pPix[i].m_iIndex / volGeom.getGridColCount(),
iDet,
projGeom.getProjectionAngle(0));
BOOST_CHECK_SMALL( pPix[i].m_fWeight - fTest, 0.00037f);
fW += pPix[i].m_fWeight;
}
fWeight += fW;
}
delete[] pPix;
}
}