/* ----------------------------------------------------------------------- Copyright 2012 iMinds-Vision Lab, University of Antwerp Contact: astra@ua.ac.be Website: http://astra.ua.ac.be This file is part of the All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- $Id$ */ #define BOOST_TEST_DYN_LINK #include <boost/test/unit_test.hpp> #include <boost/test/auto_unit_test.hpp> #include <boost/test/floating_point_comparison.hpp> #include "astra/ParallelBeamLineKernelProjector2D.h" #include "astra/ParallelBeamLinearKernelProjector2D.h" #include "astra/ParallelBeamStripKernelProjector2D.h" #include "astra/ParallelProjectionGeometry2D.h" #include "astra/VolumeGeometry2D.h" #include "astra/ProjectionGeometry2D.h" #include <ctime> using astra::float32; struct TestParallelBeamLinearKernelProjector2D { TestParallelBeamLinearKernelProjector2D() { astra::float32 angles[] = { 2.6f }; BOOST_REQUIRE( projGeom.initialize(1, 3, 1.0f, angles) ); BOOST_REQUIRE( volGeom.initialize(3, 2) ); BOOST_REQUIRE( proj.initialize(&projGeom, &volGeom) ); } ~TestParallelBeamLinearKernelProjector2D() { } astra::CParallelBeamLinearKernelProjector2D proj; astra::CParallelProjectionGeometry2D projGeom; astra::CVolumeGeometry2D volGeom; }; BOOST_FIXTURE_TEST_CASE( testParallelBeamLinearKernelProjector2D_General, TestParallelBeamLinearKernelProjector2D ) { } // Compute linear kernel for a single volume pixel/detector pixel combination float32 compute_linear_kernel(const astra::CProjectionGeometry2D& projgeom, const astra::CVolumeGeometry2D& volgeom, int iX, int iY, int iDet, float32 fAngle) { // projection of center of volume pixel on detector array float32 fDetProj = (iX - (volgeom.getGridColCount()-1.0f)/2.0f ) * volgeom.getPixelLengthX() * cos(fAngle) - (iY - (volgeom.getGridRowCount()-1.0f)/2.0f ) * volgeom.getPixelLengthY() * sin(fAngle); // start of detector pixel on detector array float32 fDetStart = projgeom.indexToDetectorOffset(iDet) - 0.5f; // printf("(%d,%d,%d): %f in (%f,%f)\n", iX,iY,iDet,fDetProj, fDetStart, fDetStart+1.0f); // projection of center of next volume pixel on detector array float32 fDetStep; // length of projection ray through volume pixel float32 fWeight; if (fabs(cos(fAngle)) > fabs(sin(fAngle))) { fDetStep = volgeom.getPixelLengthY() * fabs(cos(fAngle)); fWeight = volgeom.getPixelLengthX() * 1.0f / fabs(cos(fAngle)); } else { fDetStep = volgeom.getPixelLengthX() * fabs(sin(fAngle)); fWeight = volgeom.getPixelLengthY() * 1.0f / fabs(sin(fAngle)); } // printf("step: %f\n weight: %f\n", fDetStep, fWeight); // center of detector pixel on detector array float32 fDetCenter = fDetStart + 0.5f; // unweighted contribution of this volume pixel: // linear interpolation between // fDetCenter - fDetStep |---> 0 // fDetCenter |---> 1 // fDetCenter + fDetStep |---> 0 float32 fBase; if (fDetCenter <= fDetProj) { fBase = (fDetCenter - (fDetProj - fDetStep))/fDetStep; } else { fBase = ((fDetProj + fDetStep) - fDetCenter)/fDetStep; } // printf("base: %f\n", fBase); if (fBase < 0) fBase = 0; return fBase * fWeight; } BOOST_AUTO_TEST_CASE( testParallelBeamLinearKernelProjector2D_Rectangles ) { astra::CParallelBeamLinearKernelProjector2D proj; astra::CParallelProjectionGeometry2D projGeom; astra::CVolumeGeometry2D volGeom; const unsigned int iRandomTestCount = 100; unsigned int iSeed = time(0); srand(iSeed); for (unsigned int iTest = 0; iTest < iRandomTestCount; ++iTest) { int iDetectorCount = 1 + (rand() % 100); int iRows = 1 + (rand() % 100); int iCols = 1 + (rand() % 100); astra::float32 angles[] = { rand() * 2.0f*astra::PI / RAND_MAX }; projGeom.initialize(1, iDetectorCount, 0.8f, angles); volGeom.initialize(iCols, iRows); proj.initialize(&projGeom, &volGeom); int iMax = proj.getProjectionWeightsCount(0); BOOST_REQUIRE(iMax > 0); astra::SPixelWeight* pPix = new astra::SPixelWeight[iMax]; BOOST_REQUIRE(pPix); astra::float32 fWeight = 0; for (int iDet = 0; iDet < projGeom.getDetectorCount(); ++iDet) { int iCount; proj.computeSingleRayWeights(0, iDet, pPix, iMax, iCount); BOOST_REQUIRE(iCount <= iMax); astra::float32 fW = 0; for (int i = 0; i < iCount; ++i) { float32 fTest = compute_linear_kernel( projGeom, volGeom, pPix[i].m_iIndex % volGeom.getGridColCount(), pPix[i].m_iIndex / volGeom.getGridColCount(), iDet, projGeom.getProjectionAngle(0)); BOOST_CHECK_SMALL( pPix[i].m_fWeight - fTest, 0.00037f); fW += pPix[i].m_fWeight; } fWeight += fW; } delete[] pPix; } }