summaryrefslogtreecommitdiffstats
path: root/cuda/2d/cgls.cu
blob: 9c2df684d8a5d5909a7fd5320d5c621674af116f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
           2014-2021, CWI, Amsterdam

Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/

This file is part of the ASTRA Toolbox.


The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.

-----------------------------------------------------------------------
*/

#include "astra/cuda/2d/cgls.h"
#include "astra/cuda/2d/util.h"
#include "astra/cuda/2d/arith.h"

#include <cstdio>
#include <cassert>

namespace astraCUDA {

CGLS::CGLS() : ReconAlgo()
{
	D_z = 0;
	D_p = 0;
	D_r = 0;
	D_w = 0;

	sliceInitialized = false;
}


CGLS::~CGLS()
{
	reset();
}

void CGLS::reset()
{
	cudaFree(D_z);
	cudaFree(D_p);
	cudaFree(D_r);
	cudaFree(D_w);

	D_z = 0;
	D_p = 0;
	D_r = 0;
	D_w = 0;

	ReconAlgo::reset();
}

bool CGLS::init()
{
	// Lifetime of z: within an iteration
	allocateVolumeData(D_z, zPitch, dims);

	// Lifetime of p: full algorithm
	allocateVolumeData(D_p, pPitch, dims);

	// Lifetime of r: full algorithm
	allocateProjectionData(D_r, rPitch, dims);
	
	// Lifetime of w: within an iteration
	allocateProjectionData(D_w, wPitch, dims);

	// TODO: check if allocations succeeded
	return true;
}


bool CGLS::setBuffers(float* _D_volumeData, unsigned int _volumePitch,
                      float* _D_projData, unsigned int _projPitch)
{
	bool ok = ReconAlgo::setBuffers(_D_volumeData, _volumePitch,
	                                _D_projData, _projPitch);

	if (!ok)
		return false;

	sliceInitialized = false;

	return true;
}

bool CGLS::copyDataToGPU(const float* pfSinogram, unsigned int iSinogramPitch,
                         const float* pfReconstruction, unsigned int iReconstructionPitch,
                         const float* pfVolMask, unsigned int iVolMaskPitch,
                         const float* pfSinoMask, unsigned int iSinoMaskPitch)
{
	sliceInitialized = false;

	return ReconAlgo::copyDataToGPU(pfSinogram, iSinogramPitch, pfReconstruction, iReconstructionPitch, pfVolMask, iVolMaskPitch, pfSinoMask, iSinoMaskPitch);
}

bool CGLS::iterate(unsigned int iterations)
{
	if (!sliceInitialized) {

		// copy sinogram
		duplicateProjectionData(D_r, D_sinoData, sinoPitch, dims);

		// r = sino - A*x
		if (useVolumeMask) {
			// Use z as temporary storage here since it is unused
			duplicateVolumeData(D_z, D_volumeData, volumePitch, dims);
			processVol<opMul>(D_z, D_maskData, zPitch, dims);
			callFP(D_z, zPitch, D_r, rPitch, -1.0f);
		} else {
			callFP(D_volumeData, volumePitch, D_r, rPitch, -1.0f);
		}


		// p = A'*r
		zeroVolumeData(D_p, pPitch, dims);
		callBP(D_p, pPitch, D_r, rPitch, 1.0f);
		if (useVolumeMask)
			processVol<opMul>(D_p, D_maskData, pPitch, dims);


		gamma = dotProduct2D(D_p, pPitch, dims.iVolWidth, dims.iVolHeight);

		sliceInitialized = true;
	}


	// iteration
	for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) {

		// w = A*p
		zeroProjectionData(D_w, wPitch, dims);
		callFP(D_p, pPitch, D_w, wPitch, 1.0f);

		// alpha = gamma / <w,w>
		float ww = dotProduct2D(D_w, wPitch, dims.iProjDets, dims.iProjAngles);
		float alpha = gamma / ww;

		// x += alpha*p
		processVol<opAddScaled>(D_volumeData, D_p, alpha, volumePitch, dims);

		// r -= alpha*w
		processSino<opAddScaled>(D_r, D_w, -alpha, rPitch, dims);


		// z = A'*r
		zeroVolumeData(D_z, zPitch, dims);
		callBP(D_z, zPitch, D_r, rPitch, 1.0f);
		if (useVolumeMask)
			processVol<opMul>(D_z, D_maskData, zPitch, dims);

		float beta = 1.0f / gamma;
		gamma = dotProduct2D(D_z, zPitch, dims.iVolWidth, dims.iVolHeight);
		beta *= gamma;

		// p = z + beta*p
		processVol<opScaleAndAdd>(D_p, D_z, beta, pPitch, dims);

	}

	return true;
}


float CGLS::computeDiffNorm()
{
	// We can use w and z as temporary storage here since they're not
	// used outside of iterations.

	// copy sinogram to w
	duplicateProjectionData(D_w, D_sinoData, sinoPitch, dims);

	// do FP, subtracting projection from sinogram
	if (useVolumeMask) {
			duplicateVolumeData(D_z, D_volumeData, volumePitch, dims);
			processVol<opMul>(D_z, D_maskData, zPitch, dims);
			callFP(D_z, zPitch, D_w, wPitch, -1.0f);
	} else {
			callFP(D_volumeData, volumePitch, D_w, wPitch, -1.0f);
	}

	// compute norm of D_w

	float s = dotProduct2D(D_w, wPitch, dims.iProjDets, dims.iProjAngles);

	return sqrt(s);
}


}