summaryrefslogtreecommitdiffstats
path: root/cuda/2d/fan_fp.cu
blob: 036006dc00f2007def87925f72dca7c6493b1822 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
-----------------------------------------------------------------------
Copyright: 2010-2014, iMinds-Vision Lab, University of Antwerp
                2014, CWI, Amsterdam

Contact: astra@uantwerpen.be
Website: http://sf.net/projects/astra-toolbox

This file is part of the ASTRA Toolbox.


The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.

-----------------------------------------------------------------------
$Id$
*/

#include <cstdio>
#include <cassert>
#include <iostream>
#include <list>

#include "util.h"
#include "arith.h"

#ifdef STANDALONE
#include "testutil.h"
#endif


typedef texture<float, 2, cudaReadModeElementType> texture2D;

static texture2D gT_FanVolumeTexture;


namespace astraCUDA {

static const unsigned g_MaxAngles = 2560;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];


// optimization parameters
static const unsigned int g_anglesPerBlock = 16;
static const unsigned int g_detBlockSize = 32;
static const unsigned int g_blockSlices = 64;

static bool bindVolumeDataTexture(float* data, cudaArray*& dataArray, unsigned int pitch, unsigned int width, unsigned int height)
{
	cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
	dataArray = 0;
	cudaMallocArray(&dataArray, &channelDesc, width, height);
	cudaMemcpy2DToArray(dataArray, 0, 0, data, pitch*sizeof(float), width*sizeof(float), height, cudaMemcpyDeviceToDevice);

	gT_FanVolumeTexture.addressMode[0] = cudaAddressModeBorder;
	gT_FanVolumeTexture.addressMode[1] = cudaAddressModeBorder;
	gT_FanVolumeTexture.filterMode = cudaFilterModeLinear;
	gT_FanVolumeTexture.normalized = false;

	// TODO: For very small sizes (roughly <=512x128) with few angles (<=180)
	// not using an array is more efficient.
	//cudaBindTexture2D(0, gT_FanVolumeTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch);
	cudaBindTextureToArray(gT_FanVolumeTexture, dataArray, channelDesc);

	// TODO: error value?

	return true;
}

// projection for angles that are roughly horizontal
// (detector roughly vertical)
__global__ void FanFPhorizontal(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
	float* projData = (float*)D_projData;
	const int relDet = threadIdx.x;
	const int relAngle = threadIdx.y;

	const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;
	if (angle >= endAngle)
		return;

	const int detector = blockIdx.y * g_detBlockSize + relDet;

	if (detector < 0 || detector >= dims.iProjDets)
		return;

	const float fSrcX = gC_SrcX[angle];
	const float fSrcY = gC_SrcY[angle];
	const float fDetSX = gC_DetSX[angle];
	const float fDetSY = gC_DetSY[angle];
	const float fDetUX = gC_DetUX[angle];
	const float fDetUY = gC_DetUY[angle];

	float fVal = 0.0f;

	const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX);
	const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY);

	if (fdy > fdx)
		return;


	for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
		const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet;

		const float fDetX = fDetSX + fDet * fDetUX;
		const float fDetY = fDetSY + fDet * fDetUY;

		// ray: y = alpha * x + beta
		const float alpha = (fSrcY - fDetY) / (fSrcX - fDetX);
		const float beta = fSrcY - alpha * fSrcX;
	
		const float fDistCorr = sqrt(alpha*alpha+1.0f) * outputScale / dims.iRaysPerDet;

		// intersect ray with first slice

		float fY = -alpha * (startSlice - 0.5f*dims.iVolWidth + 0.5f) - beta + 0.5f*dims.iVolHeight - 0.5f + 0.5f;
		float fX = startSlice + 0.5f;

		int endSlice = startSlice + g_blockSlices;
		if (endSlice > dims.iVolWidth)
			endSlice = dims.iVolWidth;

		float fV = 0.0f;
		for (int slice = startSlice; slice < endSlice; ++slice)
		{
			fV += tex2D(gT_FanVolumeTexture, fX, fY);
			fY -= alpha;
			fX += 1.0f;
		}

		fVal += fV * fDistCorr;

	}

	projData[angle*projPitch+detector] += fVal;
}


// projection for angles that are roughly vertical
// (detector roughly horizontal)
__global__ void FanFPvertical(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions dims, float outputScale)
{
	const int relDet = threadIdx.x;
	const int relAngle = threadIdx.y;

	const int angle = startAngle + blockIdx.x * g_anglesPerBlock + relAngle;

	if (angle >= endAngle)
		return;

	const int detector = blockIdx.y * g_detBlockSize + relDet;

	if (detector < 0 || detector >= dims.iProjDets)
		return;

	float* projData = (float*)D_projData;

	const float fSrcX = gC_SrcX[angle];
	const float fSrcY = gC_SrcY[angle];
	const float fDetSX = gC_DetSX[angle];
	const float fDetSY = gC_DetSY[angle];
	const float fDetUX = gC_DetUX[angle];
	const float fDetUY = gC_DetUY[angle];

	float fVal = 0.0f;

	const float fdx = fabsf(fDetSX + detector*fDetUX + 0.5f - fSrcX);
	const float fdy = fabsf(fDetSY + detector*fDetUY + 0.5f - fSrcY);

	if (fdy <= fdx)
		return;


	for (int iSubT = 0; iSubT < dims.iRaysPerDet; ++iSubT) {
		const float fDet = detector + (0.5f + iSubT) / dims.iRaysPerDet /*- gC_angle_offset[angle]*/;

		const float fDetX = fDetSX + fDet * fDetUX;
		const float fDetY = fDetSY + fDet * fDetUY;

		// ray: x = alpha * y + beta
		const float alpha = (fSrcX - fDetX) / (fSrcY - fDetY);
		const float beta = fSrcX - alpha * fSrcY;
	
		const float fDistCorr = sqrt(alpha*alpha+1) * outputScale / dims.iRaysPerDet;

		// intersect ray with first slice

		float fX = -alpha * (startSlice - 0.5f*dims.iVolHeight + 0.5f) + beta + 0.5f*dims.iVolWidth - 0.5f + 0.5f;
		float fY = startSlice + 0.5f;

		int endSlice = startSlice + g_blockSlices;
		if (endSlice > dims.iVolHeight)
			endSlice = dims.iVolHeight;

		float fV = 0.0f;

		for (int slice = startSlice; slice < endSlice; ++slice)
		{
			fV += tex2D(gT_FanVolumeTexture, fX, fY);
			fX -= alpha;
			fY += 1.0f;
		}

		fVal += fV * fDistCorr;

	}

	projData[angle*projPitch+detector] += fVal;
}

bool FanFP_internal(float* D_volumeData, unsigned int volumePitch,
           float* D_projData, unsigned int projPitch,
           const SDimensions& dims, const SFanProjection* angles,
           float outputScale)
{
	assert(dims.iProjAngles <= g_MaxAngles);

	cudaArray* D_dataArray;
	bindVolumeDataTexture(D_volumeData, D_dataArray, volumePitch, dims.iVolWidth, dims.iVolHeight);

	// transfer angles to constant memory
	float* tmp = new float[dims.iProjAngles];

#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)

	TRANSFER_TO_CONSTANT(SrcX);
	TRANSFER_TO_CONSTANT(SrcY);
	TRANSFER_TO_CONSTANT(DetSX);
	TRANSFER_TO_CONSTANT(DetSY);
	TRANSFER_TO_CONSTANT(DetUX);
	TRANSFER_TO_CONSTANT(DetUY);

#undef TRANSFER_TO_CONSTANT

	delete[] tmp;

	dim3 dimBlock(g_detBlockSize, g_anglesPerBlock); // region size, angles
	const unsigned int g_blockSliceSize = g_detBlockSize;

	std::list<cudaStream_t> streams;


	unsigned int blockStart = 0;
	unsigned int blockEnd = dims.iProjAngles;

	dim3 dimGrid((blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock,
	             (dims.iProjDets+g_blockSliceSize-1)/g_blockSliceSize); // angle blocks, regions
	cudaStream_t stream1;
	cudaStreamCreate(&stream1);
	streams.push_back(stream1);
	for (unsigned int i = 0; i < dims.iVolWidth; i += g_blockSlices)
		FanFPhorizontal<<<dimGrid, dimBlock, 0, stream1>>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);

	cudaStream_t stream2;
	cudaStreamCreate(&stream2);
	streams.push_back(stream2);
	for (unsigned int i = 0; i < dims.iVolHeight; i += g_blockSlices)
		FanFPvertical<<<dimGrid, dimBlock, 0, stream2>>>(D_projData, projPitch, i, blockStart, blockEnd, dims, outputScale);

	cudaStreamDestroy(stream1);
	cudaStreamDestroy(stream2);

	cudaThreadSynchronize();

	cudaTextForceKernelsCompletion();

	cudaFreeArray(D_dataArray);

	return true;
}

bool FanFP(float* D_volumeData, unsigned int volumePitch,
           float* D_projData, unsigned int projPitch,
           const SDimensions& dims, const SFanProjection* angles,
           float outputScale)
{
	for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) {
		SDimensions subdims = dims;
		unsigned int iEndAngle = iAngle + g_MaxAngles;
		if (iEndAngle >= dims.iProjAngles)
			iEndAngle = dims.iProjAngles;
		subdims.iProjAngles = iEndAngle - iAngle;

		bool ret;
		ret = FanFP_internal(D_volumeData, volumePitch,
		                         D_projData + iAngle * projPitch, projPitch,
		                         subdims, angles + iAngle,
		                         outputScale);
		if (!ret)
			return false;
	}
	return true;
}

}

#ifdef STANDALONE

using namespace astraCUDA;

int main()
{
	float* D_volumeData;
	float* D_projData;

	SDimensions dims;
	dims.iVolWidth = 128;
	dims.iVolHeight = 128;
	dims.iProjAngles = 180;
	dims.iProjDets = 256;
	dims.fDetScale = 1.0f;
	dims.iRaysPerDet = 1;
	unsigned int volumePitch, projPitch;

	SFanProjection projs[180];

	projs[0].fSrcX = 0.0f;
	projs[0].fSrcY = 1536.0f;
	projs[0].fDetSX = 128.0f;
	projs[0].fDetSY = -512.0f;
	projs[0].fDetUX = -1.0f;
	projs[0].fDetUY = 0.0f;

#define ROTATE0(name,i,alpha) do { projs[i].f##name##X = projs[0].f##name##X * cos(alpha) - projs[0].f##name##Y * sin(alpha); projs[i].f##name##Y = projs[0].f##name##X * sin(alpha) + projs[0].f##name##Y * cos(alpha); } while(0)

	for (int i = 1; i < 180; ++i) {
		ROTATE0(Src, i, i*2*M_PI/180);
		ROTATE0(DetS, i, i*2*M_PI/180);
		ROTATE0(DetU, i, i*2*M_PI/180);
	}

#undef ROTATE0

	allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch);
	printf("pitch: %u\n", volumePitch);

	allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch);
	printf("pitch: %u\n", projPitch);

	unsigned int y, x;
	float* img = loadImage("phantom128.png", y, x);

	float* sino = new float[dims.iProjAngles * dims.iProjDets];

	memset(sino, 0, dims.iProjAngles * dims.iProjDets * sizeof(float));

	copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch);
	copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);

	float* angle = new float[dims.iProjAngles];

	for (unsigned int i = 0; i < dims.iProjAngles; ++i)
		angle[i] = i*(M_PI/dims.iProjAngles);

	FanFP(D_volumeData, volumePitch, D_projData, projPitch, dims, projs, 1.0f);

	delete[] angle;

	copySinogramFromDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch);

	float s = 0.0f;
	for (unsigned int y = 0; y < dims.iProjAngles; ++y)
		for (unsigned int x = 0; x < dims.iProjDets; ++x)
			s += sino[y*dims.iProjDets+x] * sino[y*dims.iProjDets+x];
	printf("cpu norm: %f\n", s);

	//zeroVolume(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
	s = dotProduct2D(D_projData, projPitch, dims.iProjDets, dims.iProjAngles);
	printf("gpu norm: %f\n", s);

	saveImage("sino.png",dims.iProjAngles,dims.iProjDets,sino);


	return 0;
}
#endif