1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
*/
#include "astra/cuda/2d/fbp.h"
#include "astra/cuda/2d/fft.h"
#include "astra/cuda/2d/par_bp.h"
#include "astra/cuda/2d/fan_bp.h"
#include "astra/cuda/2d/util.h"
// For fan-beam preweighting
#include "astra/cuda/3d/fdk.h"
#include "astra/Logging.h"
#include "astra/Filters.h"
#include <cuda.h>
namespace astraCUDA {
// static
int FBP::calcFourierFilterSize(int _iDetectorCount)
{
int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * _iDetectorCount);
int iFreqBinCount = astra::calcFFTFourierSize(iFFTRealDetCount);
// CHECKME: Matlab makes this at least 64. Do we also need to?
return iFreqBinCount;
}
FBP::FBP() : ReconAlgo()
{
D_filter = 0;
m_bShortScan = false;
fReconstructionScale = 1.0f;
}
FBP::~FBP()
{
reset();
}
void FBP::reset()
{
if (D_filter) {
freeComplexOnDevice((cufftComplex *)D_filter);
D_filter = 0;
}
m_bShortScan = false;
fReconstructionScale = 1.0f;
}
bool FBP::init()
{
return true;
}
bool FBP::setReconstructionScale(float fScale)
{
fReconstructionScale = fScale;
return true;
}
bool FBP::setFilter(const astra::SFilterConfig &_cfg)
{
if (D_filter)
{
freeComplexOnDevice((cufftComplex*)D_filter);
D_filter = 0;
}
if (_cfg.m_eType == astra::FILTER_NONE)
return true; // leave D_filter set to 0
int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * dims.iProjDets);
int iFreqBinCount = astra::calcFFTFourierSize(iFFTRealDetCount);
cufftComplex * pHostFilter = new cufftComplex[dims.iProjAngles * iFreqBinCount];
memset(pHostFilter, 0, sizeof(cufftComplex) * dims.iProjAngles * iFreqBinCount);
allocateComplexOnDevice(dims.iProjAngles, iFreqBinCount, (cufftComplex**)&D_filter);
switch(_cfg.m_eType)
{
case astra::FILTER_NONE:
// handled above
break;
case astra::FILTER_RAMLAK:
case astra::FILTER_SHEPPLOGAN:
case astra::FILTER_COSINE:
case astra::FILTER_HAMMING:
case astra::FILTER_HANN:
case astra::FILTER_TUKEY:
case astra::FILTER_LANCZOS:
case astra::FILTER_TRIANGULAR:
case astra::FILTER_GAUSSIAN:
case astra::FILTER_BARTLETTHANN:
case astra::FILTER_BLACKMAN:
case astra::FILTER_NUTTALL:
case astra::FILTER_BLACKMANHARRIS:
case astra::FILTER_BLACKMANNUTTALL:
case astra::FILTER_FLATTOP:
case astra::FILTER_PARZEN:
{
genCuFFTFilter(_cfg, dims.iProjAngles, pHostFilter, iFFTRealDetCount, iFreqBinCount);
uploadComplexArrayToDevice(dims.iProjAngles, iFreqBinCount, pHostFilter, (cufftComplex*)D_filter);
break;
}
case astra::FILTER_PROJECTION:
{
// make sure the offered filter has the correct size
assert(_cfg.m_iCustomFilterWidth == iFreqBinCount);
for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++)
{
float fValue = _cfg.m_pfCustomFilter[iFreqBinIndex];
for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++)
{
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].x = fValue;
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].y = 0.0f;
}
}
uploadComplexArrayToDevice(dims.iProjAngles, iFreqBinCount, pHostFilter, (cufftComplex*)D_filter);
break;
}
case astra::FILTER_SINOGRAM:
{
// make sure the offered filter has the correct size
assert(_cfg.m_iCustomFilterWidth == iFreqBinCount);
for(int iFreqBinIndex = 0; iFreqBinIndex < iFreqBinCount; iFreqBinIndex++)
{
for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++)
{
float fValue = _cfg.m_pfCustomFilter[iFreqBinIndex + iProjectionIndex * _cfg.m_iCustomFilterWidth];
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].x = fValue;
pHostFilter[iFreqBinIndex + iProjectionIndex * iFreqBinCount].y = 0.0f;
}
}
uploadComplexArrayToDevice(dims.iProjAngles, iFreqBinCount, pHostFilter, (cufftComplex*)D_filter);
break;
}
case astra::FILTER_RPROJECTION:
{
int iProjectionCount = dims.iProjAngles;
int iRealFilterElementCount = iProjectionCount * iFFTRealDetCount;
float * pfHostRealFilter = new float[iRealFilterElementCount];
memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount);
int iUsedFilterWidth = min(_cfg.m_iCustomFilterWidth, iFFTRealDetCount);
int iStartFilterIndex = (_cfg.m_iCustomFilterWidth - iUsedFilterWidth) / 2;
int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth;
int iFilterShiftSize = _cfg.m_iCustomFilterWidth / 2;
for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++)
{
int iFFTInFilterIndex = (iDetectorIndex + iFFTRealDetCount - iFilterShiftSize) % iFFTRealDetCount;
float fValue = _cfg.m_pfCustomFilter[iDetectorIndex];
for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++)
{
pfHostRealFilter[iFFTInFilterIndex + iProjectionIndex * iFFTRealDetCount] = fValue;
}
}
float* pfDevRealFilter = NULL;
cudaMalloc((void **)&pfDevRealFilter, sizeof(float) * iRealFilterElementCount); // TODO: check for errors
cudaMemcpy(pfDevRealFilter, pfHostRealFilter, sizeof(float) * iRealFilterElementCount, cudaMemcpyHostToDevice);
delete[] pfHostRealFilter;
runCudaFFT(iProjectionCount, pfDevRealFilter, iFFTRealDetCount, iFFTRealDetCount, iFFTRealDetCount, iFreqBinCount, (cufftComplex*)D_filter);
cudaFree(pfDevRealFilter);
break;
}
case astra::FILTER_RSINOGRAM:
{
int iProjectionCount = dims.iProjAngles;
int iRealFilterElementCount = iProjectionCount * iFFTRealDetCount;
float* pfHostRealFilter = new float[iRealFilterElementCount];
memset(pfHostRealFilter, 0, sizeof(float) * iRealFilterElementCount);
int iUsedFilterWidth = min(_cfg.m_iCustomFilterWidth, iFFTRealDetCount);
int iStartFilterIndex = (_cfg.m_iCustomFilterWidth - iUsedFilterWidth) / 2;
int iMaxFilterIndex = iStartFilterIndex + iUsedFilterWidth;
int iFilterShiftSize = _cfg.m_iCustomFilterWidth / 2;
for(int iDetectorIndex = iStartFilterIndex; iDetectorIndex < iMaxFilterIndex; iDetectorIndex++)
{
int iFFTInFilterIndex = (iDetectorIndex + iFFTRealDetCount - iFilterShiftSize) % iFFTRealDetCount;
for(int iProjectionIndex = 0; iProjectionIndex < (int)dims.iProjAngles; iProjectionIndex++)
{
float fValue = _cfg.m_pfCustomFilter[iDetectorIndex + iProjectionIndex * _cfg.m_iCustomFilterWidth];
pfHostRealFilter[iFFTInFilterIndex + iProjectionIndex * iFFTRealDetCount] = fValue;
}
}
float* pfDevRealFilter = NULL;
cudaMalloc((void **)&pfDevRealFilter, sizeof(float) * iRealFilterElementCount); // TODO: check for errors
cudaMemcpy(pfDevRealFilter, pfHostRealFilter, sizeof(float) * iRealFilterElementCount, cudaMemcpyHostToDevice);
delete[] pfHostRealFilter;
runCudaFFT(iProjectionCount, pfDevRealFilter, iFFTRealDetCount, iFFTRealDetCount, iFFTRealDetCount, iFreqBinCount, (cufftComplex*)D_filter);
cudaFree(pfDevRealFilter);
break;
}
default:
{
ASTRA_ERROR("FBP::setFilter: Unknown filter type requested");
delete [] pHostFilter;
return false;
}
}
delete [] pHostFilter;
return true;
}
bool FBP::iterate(unsigned int iterations)
{
zeroVolumeData(D_volumeData, volumePitch, dims);
bool ok = false;
float fFanDetSize = 0.0f;
if (fanProjs) {
// Call FDK_PreWeight to handle fan beam geometry. We treat
// this as a cone beam setup of a single slice:
// TODO: TOffsets affects this preweighting...
// TODO: We take the fan parameters from the last projection here
// without checking if they're the same in all projections
float *pfAngles = new float[dims.iProjAngles];
float fOriginSource, fOriginDetector, fOffset;
for (unsigned int i = 0; i < dims.iProjAngles; ++i) {
bool ok = astra::getFanParameters(fanProjs[i], dims.iProjDets,
pfAngles[i],
fOriginSource, fOriginDetector,
fFanDetSize, fOffset);
if (!ok) {
ASTRA_ERROR("FBP_CUDA: Failed to extract circular fan beam parameters from fan beam geometry");
return false;
}
}
// We create a fake cudaPitchedPtr
cudaPitchedPtr tmp;
tmp.ptr = D_sinoData;
tmp.pitch = sinoPitch * sizeof(float);
tmp.xsize = dims.iProjDets;
tmp.ysize = dims.iProjAngles;
// and a fake Dimensions3D
astraCUDA3d::SDimensions3D dims3d;
dims3d.iVolX = dims.iVolWidth;
dims3d.iVolY = dims.iVolHeight;
dims3d.iVolZ = 1;
dims3d.iProjAngles = dims.iProjAngles;
dims3d.iProjU = dims.iProjDets;
dims3d.iProjV = 1;
astraCUDA3d::FDK_PreWeight(tmp, fOriginSource,
fOriginDetector, 0.0f,
fFanDetSize, 1.0f,
m_bShortScan, dims3d, pfAngles);
} else {
// TODO: How should different detector pixel size in different
// projections be handled?
}
if (D_filter) {
int iFFTRealDetCount = astra::calcNextPowerOfTwo(2 * dims.iProjDets);
int iFFTFourDetCount = astra::calcFFTFourierSize(iFFTRealDetCount);
cufftComplex * pDevComplexSinogram = NULL;
allocateComplexOnDevice(dims.iProjAngles, iFFTFourDetCount, &pDevComplexSinogram);
runCudaFFT(dims.iProjAngles, D_sinoData, sinoPitch, dims.iProjDets, iFFTRealDetCount, iFFTFourDetCount, pDevComplexSinogram);
applyFilter(dims.iProjAngles, iFFTFourDetCount, pDevComplexSinogram, (cufftComplex*)D_filter);
runCudaIFFT(dims.iProjAngles, pDevComplexSinogram, D_sinoData, sinoPitch, dims.iProjDets, iFFTRealDetCount, iFFTFourDetCount);
freeComplexOnDevice(pDevComplexSinogram);
}
if (fanProjs) {
ok = FanBP_FBPWeighted(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, fanProjs, fProjectorScale * fReconstructionScale);
} else {
// scale by number of angles. For the fan-beam case, this is already
// handled by FDK_PreWeight
float fOutputScale = (M_PI / 2.0f) / (float)dims.iProjAngles;
ok = BP(D_volumeData, volumePitch, D_sinoData, sinoPitch, dims, parProjs, fOutputScale * fProjectorScale * fReconstructionScale);
}
if(!ok)
{
return false;
}
return true;
}
}
|