1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
$Id$
*/
using namespace astra;
template <typename Policy>
void CFanFlatBeamLineKernelProjector2D::project(Policy& p)
{
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CFanFlatBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CFanFlatBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
//----------------------------------------------------------------------------------------
// PROJECT BLOCK
template <typename Policy>
void CFanFlatBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// variables
float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2;
float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY;
int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1;
bool switch_t;
const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry);
const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry);
float32 old_theta, theta, alpha;
const SFanProjection * proj = 0;
// loop angles
for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
// get theta
if (pProjectionGeometry) {
old_theta = pProjectionGeometry->getProjectionAngle(iAngle);
}
else if (pVecProjectionGeometry) {
proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
old_theta = atan2(-proj->fSrcX, proj->fSrcY);
if (old_theta < 0) old_theta += 2*PI;
} else {
assert(false);
}
switch_t = false;
if (old_theta >= 7*PIdiv4) old_theta -= 2*PI;
if (old_theta >= 3*PIdiv4) {
old_theta -= PI;
switch_t = true;
}
// loop detectors
for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
// get values
if (pProjectionGeometry) {
t = -pProjectionGeometry->indexToDetectorOffset(iDetector);
alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance());
t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance();
}
else if (pVecProjectionGeometry) {
float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector);
float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector);
alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY);
t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY);
} else {
assert(false);
}
if (switch_t) t = -t;
theta = old_theta + alpha;
// precalculate sin, cos, 1/cos
sin_theta = sin(theta);
cos_theta = cos(theta);
inv_sin_theta = 1.0f / sin_theta;
inv_cos_theta = 1.0f / cos_theta;
// precalculate kernel limits
lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta;
updatePerRow = sin_theta * inv_cos_theta;
inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
// precalculate kernel limits
lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta;
updatePerCol = cos_theta * inv_sin_theta;
inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
// precalculate S and T
S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow);
T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol);
// vertically
if (old_theta <= PIdiv4) {
// calculate x for row 0
P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta;
x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX;
// for each row
for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
// get coords
x1 = int((x > 0.0f) ? x : x-1.0f);
x2 = x - x1;
x += updatePerRow;
if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue;
// left
if (x2 < 0.5f-S) {
I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow;
if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
}
// center
else if (x2 <= 0.5f+S) {
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
p.pixelPosterior(iVolumeIndex);
}
}
}
// right
else if (x2 <= 1.0f) {
I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow;
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
}
// horizontally
//else if (PIdiv4 <= old_theta && old_theta <= 3*PIdiv4) {
else {
// calculate point P
P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta;
x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY;
// for each col
for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
// get coords
x1 = int((x > 0.0f) ? x : x-1.0f);
x2 = x - x1;
x += updatePerCol;
if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue;
// up
if (x2 < 0.5f-T) {
I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol;
if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
}
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
}
// center
else if (x2 <= 0.5f+T) {
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
p.pixelPosterior(iVolumeIndex);
}
}
}
// down
else if (x2 <= 1.0f) {
I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol;
if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, I);
p.pixelPosterior(iVolumeIndex);
}
}
if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col);
// POLICY: PIXEL PRIOR + ADD + POSTERIOR
if (p.pixelPrior(iVolumeIndex)) {
p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
p.pixelPosterior(iVolumeIndex);
}
}
}
}
} // end loop col
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
} // end loop detector
} // end loop angles
}
|