1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
2014-2021, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
*/
#define policy_weight(p,rayindex,volindex,weight) do { if (p.pixelPrior(volindex)) { p.addWeight(rayindex, volindex, weight); p.pixelPosterior(volindex); } } while (false)
template <typename Policy>
void CParallelBeamDistanceDrivenProjector2D::project(Policy& p)
{
projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(),
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CParallelBeamDistanceDrivenProjector2D::projectSingleProjection(int _iProjection, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
0, m_pProjectionGeometry->getDetectorCount(), p);
}
template <typename Policy>
void CParallelBeamDistanceDrivenProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
{
projectBlock_internal(_iProjection, _iProjection + 1,
_iDetector, _iDetector + 1, p);
}
template <typename Policy>
void CParallelBeamDistanceDrivenProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p)
{
// get vector geometry
const CParallelVecProjectionGeometry2D* pVecProjectionGeometry;
if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)) {
pVecProjectionGeometry = dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry)->toVectorGeometry();
} else {
pVecProjectionGeometry = dynamic_cast<CParallelVecProjectionGeometry2D*>(m_pProjectionGeometry);
}
// precomputations
const float32 pixelLengthX = m_pVolumeGeometry->getPixelLengthX();
const float32 pixelLengthY = m_pVolumeGeometry->getPixelLengthY();
const float32 inv_pixelLengthX = 1.0f / pixelLengthX;
const float32 inv_pixelLengthY = 1.0f / pixelLengthY;
const int colCount = m_pVolumeGeometry->getGridColCount();
const int rowCount = m_pVolumeGeometry->getGridRowCount();
// Performance note:
// This is not a very well optimized version of the distance driven
// projector. The CPU projector model in ASTRA requires ray-driven iteration,
// which limits re-use of intermediate computations.
// loop angles
for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) {
const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
const bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY);
const float32 Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f;
const float32 Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f;
const float32 rayWidth = fabs(proj->fDetUX * proj->fRayY - proj->fDetUY * proj->fRayX) /
sqrt(proj->fRayX * proj->fRayX + proj->fRayY * proj->fRayY);
// loop detectors
for (int iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) {
const int iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
// POLICY: RAY PRIOR
if (!p.rayPrior(iRayIndex)) continue;
const float32 Dx = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX;
const float32 Dy = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY;
if (vertical) {
const float32 RxOverRy = proj->fRayX/proj->fRayY;
const float32 lengthPerRow = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY() / rayWidth;
const float32 deltac = -pixelLengthY * RxOverRy * inv_pixelLengthX;
const float32 deltad = 0.5f * fabs((proj->fDetUX - proj->fDetUY * RxOverRy) * inv_pixelLengthX);
// calculate c for row 0
float32 c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX + 0.5f;
// loop rows
for (int row = 0; row < rowCount; ++row, c+= deltac) {
// horizontal extent of ray in center of this row:
// [ c - deltad , c + deltad ]
// |-gapBegin-*---|------|----*-gapEnd-|
// * = ray extent intercepts; c - deltad and c + deltad
// | = pixel column edges
const int colBegin = (int)floor(c - deltad);
const int colEnd = (int)ceil(c + deltad);
if (colBegin >= colCount || colEnd <= 0)
continue;
int iVolumeIndex = row * colCount + colBegin;
if (colBegin + 1 == colEnd) {
if (colBegin >= 0 && colBegin < colCount)
policy_weight(p, iRayIndex, iVolumeIndex,
2.0f * deltad * lengthPerRow);
} else {
if (colBegin >= 0) {
const float gapBegin = (c - deltad) - (float32)colBegin;
policy_weight(p, iRayIndex, iVolumeIndex,
(1.0f - gapBegin) * lengthPerRow);
}
const int clippedMColBegin = std::max(colBegin + 1, 0);
const int clippedMColEnd = std::min(colEnd - 1, colCount);
iVolumeIndex = row * colCount + clippedMColBegin;
for (int col = clippedMColBegin; col < clippedMColEnd; ++col, ++iVolumeIndex) {
policy_weight(p, iRayIndex, iVolumeIndex, lengthPerRow);
}
iVolumeIndex = row * colCount + colEnd - 1;
if (colEnd <= colCount) {
const float gapEnd = (float32)colEnd - (c + deltad);
policy_weight(p, iRayIndex, iVolumeIndex,
(1.0f - gapEnd) * lengthPerRow);
}
}
}
} else {
const float32 RyOverRx = proj->fRayY/proj->fRayX;
const float32 lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * m_pVolumeGeometry->getPixelLengthY() / rayWidth;
const float32 deltar = -pixelLengthX * RyOverRx * inv_pixelLengthY;
const float32 deltad = 0.5f * fabs((proj->fDetUY - proj->fDetUX * RyOverRx) * inv_pixelLengthY);
// calculate r for col 0
float32 r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY + 0.5f;
// loop columns
for (int col = 0; col < colCount; ++col, r+= deltar) {
// vertical extent of ray in center of this column:
// [ r - deltad , r + deltad ]
const int rowBegin = (int)floor(r - deltad);
const int rowEnd = (int)ceil(r + deltad);
if (rowBegin >= rowCount || rowEnd <= 0)
continue;
int iVolumeIndex = rowBegin * colCount + col;
if (rowBegin + 1 == rowEnd) {
if (rowBegin >= 0 && rowBegin < rowCount)
policy_weight(p, iRayIndex, iVolumeIndex,
2.0f * deltad * lengthPerCol);
} else {
if (rowBegin >= 0) {
const float gapBegin = (r - deltad) - (float32)rowBegin;
policy_weight(p, iRayIndex, iVolumeIndex,
(1.0f - gapBegin) * lengthPerCol);
}
const int clippedMRowBegin = std::max(rowBegin + 1, 0);
const int clippedMRowEnd = std::min(rowEnd - 1, rowCount);
iVolumeIndex = clippedMRowBegin * colCount + col;
for (int row = clippedMRowBegin; row < clippedMRowEnd; ++row, iVolumeIndex += colCount) {
policy_weight(p, iRayIndex, iVolumeIndex, lengthPerCol);
}
iVolumeIndex = (rowEnd - 1) * colCount + col;
if (rowEnd <= rowCount) {
const float gapEnd = (float32)rowEnd - (r + deltad);
policy_weight(p, iRayIndex, iVolumeIndex,
(1.0f - gapEnd) * lengthPerCol);
}
}
}
}
// POLICY: RAY POSTERIOR
p.rayPosterior(iRayIndex);
}
}
if (dynamic_cast<CParallelProjectionGeometry2D*>(m_pProjectionGeometry))
delete pVecProjectionGeometry;
}
|