summaryrefslogtreecommitdiffstats
path: root/python/astra/utils.pyx
blob: 1bc9c0babfe8b153fab6a69d95e2513ade2268fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -----------------------------------------------------------------------
# Copyright: 2010-2021, imec Vision Lab, University of Antwerp
#            2013-2021, CWI, Amsterdam
#
# Contact: astra@astra-toolbox.com
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------
#
# distutils: language = c++
# distutils: libraries = astra

import sys
cimport numpy as np
import numpy as np
import six
if six.PY3:
    import builtins
else:
    import __builtin__ as builtins
from libcpp.string cimport string
from libcpp.vector cimport vector
from libcpp.list cimport list
from cython.operator cimport dereference as deref, preincrement as inc
from cpython.version cimport PY_MAJOR_VERSION

cimport PyXMLDocument
from .PyXMLDocument cimport XMLDocument
from .PyXMLDocument cimport XMLNode
from .PyIncludes cimport *

from .pythonutils import GPULink, checkArrayForLink

cdef extern from "CFloat32CustomPython.h":
    cdef cppclass CFloat32CustomPython:
        CFloat32CustomPython(arrIn)

cdef extern from "Python.h":
    void* PyLong_AsVoidPtr(object)


include "config.pxi"


cdef Config * dictToConfig(string rootname, dc) except NULL:
    cdef Config * cfg = new Config()
    cfg.initialize(rootname)
    try:
        readDict(cfg.self, dc)
    except Exception:
        del cfg
        exc = sys.exc_info()
        raise exc[0], exc[1], exc[2]
    return cfg

def convert_item(item):
    if isinstance(item, six.string_types):
        return item.encode('ascii')

    if type(item) is not dict:
        return item

    out_dict = {}
    for k in item:
        out_dict[convert_item(k)] = convert_item(item[k])
    return out_dict


def wrap_to_bytes(value):
    if isinstance(value, six.binary_type):
        return value
    s = str(value)
    if PY_MAJOR_VERSION == 3:
        s = s.encode('ascii')
    return s


def wrap_from_bytes(value):
    s = value
    if PY_MAJOR_VERSION == 3:
        s = s.decode('ascii')
    return s


cdef bool readDict(XMLNode root, _dc) except False:
    cdef XMLNode listbase
    cdef XMLNode itm
    cdef int i
    cdef int j
    cdef double* data

    dc = convert_item(_dc)
    for item in dc:
        val = dc[item]
        if isinstance(val, builtins.list) or isinstance(val, tuple):
            val = np.array(val,dtype=np.float64)
        if isinstance(val, np.ndarray):
            if val.size == 0:
                break
            listbase = root.addChildNode(item)
            contig_data = np.ascontiguousarray(val,dtype=np.float64)
            data = <double*>np.PyArray_DATA(contig_data)
            if val.ndim == 2:
                listbase.setContent(data, val.shape[1], val.shape[0], False)
            elif val.ndim == 1:
                listbase.setContent(data, val.shape[0])
            else:
                raise Exception("Only 1 or 2 dimensions are allowed")
        elif isinstance(val, dict):
            if item == six.b('option') or item == six.b('options') or item == six.b('Option') or item == six.b('Options'):
                readOptions(root, val)
            else:
                itm = root.addChildNode(item)
                readDict(itm, val)
        else:
            if item == six.b('type'):
                root.addAttribute(< string > six.b('type'), <string> wrap_to_bytes(val))
            else:
                if isinstance(val, builtins.bool):
                    val = int(val)
                itm = root.addChildNode(item, wrap_to_bytes(val))
    return True

cdef bool readOptions(XMLNode node, dc) except False:
    cdef XMLNode listbase
    cdef XMLNode itm
    cdef int i
    cdef int j
    cdef double* data
    for item in dc:
        val = dc[item]
        if node.hasOption(item):
            raise Exception('Duplicate Option: %s' % item)
        if isinstance(val, builtins.list) or isinstance(val, tuple):
            val = np.array(val,dtype=np.float64)
        if isinstance(val, np.ndarray):
            if val.size == 0:
                break
            listbase = node.addChildNode(six.b('Option'))
            listbase.addAttribute(< string > six.b('key'), < string > item)
            contig_data = np.ascontiguousarray(val,dtype=np.float64)
            data = <double*>np.PyArray_DATA(contig_data)
            if val.ndim == 2:
                listbase.setContent(data, val.shape[1], val.shape[0], False)
            elif val.ndim == 1:
                listbase.setContent(data, val.shape[0])
            else:
                raise Exception("Only 1 or 2 dimensions are allowed")
        else:
            if isinstance(val, builtins.bool):
                val = int(val)
            node.addOption(item, wrap_to_bytes(val))
    return True

cdef configToDict(Config *cfg):
    return XMLNode2dict(cfg.self)

def castString3(input):
    return input.decode('utf-8')

def castString2(input):
    return input

if six.PY3:
    castString = castString3
else:
    castString = castString2

def stringToPythonValue(inputIn):
    input = castString(inputIn)
    # matrix
    if ';' in input:
        input = input.rstrip(';')
        row_strings = input.split(';')
        col_strings = row_strings[0].split(',')
        nRows = len(row_strings)
        nCols = len(col_strings)

        out = np.empty((nRows,nCols))
        for ridx, row in enumerate(row_strings):
            col_strings = row.split(',')
            for cidx, col in enumerate(col_strings):
                out[ridx,cidx] = float(col)
        return out

    # vector
    if ',' in input:
        input = input.rstrip(',')
        items = input.split(',')
        out = np.empty(len(items))
        for idx,item in enumerate(items):
            out[idx] = float(item)
        return out

    try:
        # integer
        return int(input)
    except ValueError:
        try:
            #float
            return float(input)
        except ValueError:
            # string
            return str(input)


cdef XMLNode2dict(XMLNode node):
    cdef XMLNode subnode
    cdef list[XMLNode] nodes
    cdef list[XMLNode].iterator it
    dct = {}
    opts = {}
    if node.hasAttribute(six.b('type')):
        dct['type'] = castString(node.getAttribute(six.b('type')))
    nodes = node.getNodes()
    it = nodes.begin()
    while it != nodes.end():
        subnode = deref(it)
        if castString(subnode.getName())=="Option":
            if subnode.hasAttribute('value'):
                opts[castString(subnode.getAttribute('key'))] = stringToPythonValue(subnode.getAttribute('value'))
            else:
                opts[castString(subnode.getAttribute('key'))] = stringToPythonValue(subnode.getContent())
        else:
            dct[castString(subnode.getName())] = stringToPythonValue(subnode.getContent())
        inc(it)
    if len(opts)>0: dct['options'] = opts
    return dct

cdef CFloat32VolumeData3D* linkVolFromGeometry(CVolumeGeometry3D *pGeometry, data) except NULL:
    cdef CFloat32VolumeData3D * pDataObject3D = NULL
    geom_shape = (pGeometry.getGridSliceCount(), pGeometry.getGridRowCount(), pGeometry.getGridColCount())
    if isinstance(data, np.ndarray):
        data_shape = data.shape
    elif isinstance(data, GPULink):
        data_shape = (data.z, data.y, data.x)
    if geom_shape != data_shape:
        raise ValueError(
            "The dimensions of the data do not match those specified in the geometry: {} != {}".format(data_shape, geom_shape))

    if isinstance(data, np.ndarray):
        checkArrayForLink(data)
        pCustom = <CFloat32CustomMemory*> new CFloat32CustomPython(data)
        pDataObject3D = new CFloat32VolumeData3DMemory(pGeometry, pCustom)
    elif isinstance(data, GPULink):
        IF HAVE_CUDA==True:
            hnd = wrapHandle(<float*>PyLong_AsVoidPtr(data.ptr), data.x, data.y, data.z, data.pitch/4)
            pDataObject3D = new CFloat32VolumeData3DGPU(pGeometry, hnd)
        ELSE:
            raise NotImplementedError("CUDA support is not enabled in ASTRA")
    else:
        raise TypeError("data should be a numpy.ndarray or a GPULink object")
    return pDataObject3D

cdef CFloat32ProjectionData3D* linkProjFromGeometry(CProjectionGeometry3D *pGeometry, data) except NULL:
    cdef CFloat32ProjectionData3D * pDataObject3D = NULL
    geom_shape = (pGeometry.getDetectorRowCount(), pGeometry.getProjectionCount(), pGeometry.getDetectorColCount())
    if isinstance(data, np.ndarray):
        data_shape = data.shape
    elif isinstance(data, GPULink):
        data_shape = (data.z, data.y, data.x)
    if geom_shape != data_shape:
        raise ValueError(
            "The dimensions of the data do not match those specified in the geometry: {} != {}".format(data_shape, geom_shape))

    if isinstance(data, np.ndarray):
        checkArrayForLink(data)
        pCustom = <CFloat32CustomMemory*> new CFloat32CustomPython(data)
        pDataObject3D = new CFloat32ProjectionData3DMemory(pGeometry, pCustom)
    elif isinstance(data, GPULink):
        IF HAVE_CUDA==True:
            hnd = wrapHandle(<float*>PyLong_AsVoidPtr(data.ptr), data.x, data.y, data.z, data.pitch/4)
            pDataObject3D = new CFloat32ProjectionData3DGPU(pGeometry, hnd)
        ELSE:
            raise NotImplementedError("CUDA support is not enabled in ASTRA")
    else:
        raise TypeError("data should be a numpy.ndarray or a GPULink object")
    return pDataObject3D