summaryrefslogtreecommitdiffstats
path: root/samples/matlab/s013_constraints.m
blob: aaaf4d1677eba38671abd833e649edd793a41750 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
% -----------------------------------------------------------------------
% This file is part of the ASTRA Toolbox
% 
% Copyright: 2010-2018, imec Vision Lab, University of Antwerp
%            2014-2018, CWI, Amsterdam
% License: Open Source under GPLv3
% Contact: astra@astra-toolbox.com
% Website: http://www.astra-toolbox.com/
% -----------------------------------------------------------------------

% In this example we will create a reconstruction constrained to
% greyvalues between 0 and 1

vol_geom = astra_create_vol_geom(256, 256);
proj_geom = astra_create_proj_geom('parallel', 1.0, 384, linspace2(0,pi,50));

% As before, create a sinogram from a phantom
P = phantom(256);
[sinogram_id, sinogram] = astra_create_sino_gpu(P, proj_geom, vol_geom);
figure(1); imshow(P, []);
figure(2); imshow(sinogram, []);

% Create a data object for the reconstruction
rec_id = astra_mex_data2d('create', '-vol', vol_geom);

% Set up the parameters for a reconstruction algorithm using the GPU
cfg = astra_struct('SIRT_CUDA');
cfg.ReconstructionDataId = rec_id;
cfg.ProjectionDataId = sinogram_id;
cfg.option.MinConstraint = 0;
cfg.option.MaxConstraint = 1;

% Create the algorithm object from the configuration structure
alg_id = astra_mex_algorithm('create', cfg);

% Run 150 iterations of the algorithm
astra_mex_algorithm('iterate', alg_id, 150);

% Get the result
rec = astra_mex_data2d('get', rec_id);
figure(3); imshow(rec, []);

% Clean up. Note that GPU memory is tied up in the algorithm object,
% and main RAM in the data objects.
astra_mex_algorithm('delete', alg_id);
astra_mex_data2d('delete', rec_id);
astra_mex_data2d('delete', sinogram_id);