summaryrefslogtreecommitdiffstats
path: root/samples/python/s018_plugin.py
blob: 8fbac99f4a060eb01932c994d00a7b5d1f7ec2dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -----------------------------------------------------------------------
# Copyright: 2010-2018, iMinds-Vision Lab, University of Antwerp
#            2013-2018, CWI, Amsterdam
#
# Contact: astra@astra-toolbox.com
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------

import astra
import numpy as np
import six

# Define the plugin class (has to subclass astra.plugin.base)
# Note that usually, these will be defined in a separate package/module
class LandweberPlugin(astra.plugin.base):
    """Example of an ASTRA plugin class, implementing a simple 2D Landweber algorithm.

    Options:

    'Relaxation': relaxation factor (optional)
    """

    # The astra_name variable defines the name to use to
    # call the plugin from ASTRA
    astra_name = "LANDWEBER-PLUGIN"

    def initialize(self,cfg, Relaxation = 1):
        self.W = astra.OpTomo(cfg['ProjectorId'])
        self.vid = cfg['ReconstructionDataId']
        self.sid = cfg['ProjectionDataId']
        self.rel = Relaxation

    def run(self, its):
        v = astra.data2d.get_shared(self.vid)
        s = astra.data2d.get_shared(self.sid)
        tv = np.zeros(v.shape, dtype=np.float32)
        ts = np.zeros(s.shape, dtype=np.float32)
        W = self.W
        for i in range(its):
            W.FP(v,out=ts)
            ts -= s # ts = W*v - s

            W.BP(ts,out=tv)
            tv *= self.rel / s.size

            v -= tv # v = v - rel * W'*(W*v-s) / s.size

if __name__=='__main__':

    vol_geom = astra.create_vol_geom(256, 256)
    proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180,False))

    # As before, create a sinogram from a phantom
    import scipy.io
    P = scipy.io.loadmat('phantom.mat')['phantom256']
    proj_id = astra.create_projector('cuda',proj_geom,vol_geom)

    # construct the OpTomo object
    W = astra.OpTomo(proj_id)

    sinogram = W * P
    sinogram = sinogram.reshape([180, 384])

    # Register the plugin with ASTRA
    # First we import the package that contains the plugin
    import s018_plugin
    # Then, we register the plugin class with ASTRA
    astra.plugin.register(s018_plugin.LandweberPlugin)

    # Get a list of registered plugins
    six.print_(astra.plugin.get_registered())

    # To get help on a registered plugin, use get_help
    six.print_(astra.plugin.get_help('LANDWEBER-PLUGIN'))

    # Create data structures
    sid = astra.data2d.create('-sino', proj_geom, sinogram)
    vid = astra.data2d.create('-vol', vol_geom)

    # Create config using plugin name
    cfg = astra.astra_dict('LANDWEBER-PLUGIN')
    cfg['ProjectorId'] = proj_id
    cfg['ProjectionDataId'] = sid
    cfg['ReconstructionDataId'] = vid

    # Create algorithm object
    alg_id = astra.algorithm.create(cfg)

    # Run algorithm for 100 iterations
    astra.algorithm.run(alg_id, 100)

    # Get reconstruction
    rec = astra.data2d.get(vid)

    # Options for the plugin go in cfg['option']
    cfg = astra.astra_dict('LANDWEBER-PLUGIN')
    cfg['ProjectorId'] = proj_id
    cfg['ProjectionDataId'] = sid
    cfg['ReconstructionDataId'] = vid
    cfg['option'] = {}
    cfg['option']['Relaxation'] = 1.5
    alg_id_rel = astra.algorithm.create(cfg)
    astra.algorithm.run(alg_id_rel, 100)
    rec_rel = astra.data2d.get(vid)

    # We can also use OpTomo to call the plugin
    rec_op = W.reconstruct('LANDWEBER-PLUGIN', sinogram, 100, extraOptions={'Relaxation':1.5})


    # ASTRA also comes with built-in plugins:
    astra.plugin.register(astra.plugins.SIRTPlugin)
    astra.plugin.register(astra.plugins.CGLSPlugin)
    rec_sirt = W.reconstruct('SIRT-PLUGIN', sinogram, 100, extraOptions={'Relaxation':1.5})
    rec_cgls = W.reconstruct('CGLS-PLUGIN', sinogram, 100)


    import pylab as pl
    pl.gray()
    pl.figure(1)
    pl.imshow(rec,vmin=0,vmax=1)
    pl.figure(2)
    pl.imshow(rec_rel,vmin=0,vmax=1)
    pl.figure(3)
    pl.imshow(rec_op,vmin=0,vmax=1)
    pl.figure(4)
    pl.imshow(rec_sirt,vmin=0,vmax=1)
    pl.figure(5)
    pl.imshow(rec_cgls,vmin=0,vmax=1)
    pl.show()

    # Clean up.
    astra.projector.delete(proj_id)
    astra.algorithm.delete([alg_id, alg_id_rel])
    astra.data2d.delete([vid, sid])