diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
commit | d000db76c60654cdb0b07ea7f7967ceeebfbd73a (patch) | |
tree | 0868a70bcc1c0c43091bc760de932638898ded99 /demos/demoMatlab_3Ddenoise.m | |
parent | 76241b2a0eb03d5326a70a914cb649239c066e01 (diff) | |
download | regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.gz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.bz2 regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.xz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.zip |
fixes all matlab issues
Diffstat (limited to 'demos/demoMatlab_3Ddenoise.m')
-rw-r--r-- | demos/demoMatlab_3Ddenoise.m | 198 |
1 files changed, 0 insertions, 198 deletions
diff --git a/demos/demoMatlab_3Ddenoise.m b/demos/demoMatlab_3Ddenoise.m deleted file mode 100644 index 3942eea..0000000 --- a/demos/demoMatlab_3Ddenoise.m +++ /dev/null @@ -1,198 +0,0 @@ -% Volume (3D) denoising demo using CCPi-RGL -clear; close all -Path1 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'mex_compile' filesep 'installed'], 1i); -Path2 = sprintf(['data' filesep], 1i); -Path3 = sprintf(['..' filesep 'src' filesep 'Matlab' filesep 'supp'], 1i); -addpath(Path1); -addpath(Path2); -addpath(Path3); - -N = 512; -slices = 15; -vol3D = zeros(N,N,slices, 'single'); -Ideal3D = zeros(N,N,slices, 'single'); -Im = double(imread('lena_gray_512.tif'))/255; % loading image -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -Ideal3D(:,:,i) = Im; -end -vol3D(vol3D < 0) = 0; -figure; imshow(vol3D(:,:,7), [0 1]); title('Noisy image'); - -%% -fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); -lambda_reg = 0.03; % regularsation parameter for all methods -tau_rof = 0.0025; % time-marching constant -iter_rof = 300; % number of ROF iterations -epsil_tol = 0.0; % tolerance -tic; [u_rof,infovec] = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value -rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); -fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); -figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); -% lambda_reg = 0.03; % regularsation parameter for all methods -% tau_rof = 0.0025; % time-marching constant -% iter_rof = 300; % number of ROF iterations -% epsil_tol = 0.0; % tolerance -% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; -% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:))); -% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG); -% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); -lambda_reg = 0.03; % regularsation parameter for all methods -iter_fgp = 300; % number of FGP iterations -epsil_tol = 0.0; % tolerance -tic; [u_fgp,infovec] = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value -rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); -figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); -%% -fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); -% lambda_reg = 0.03; % regularsation parameter for all methods -% iter_fgp = 300; % number of FGP iterations -% epsil_tol = 0.0; % tolerance -% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; -% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:))); -% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); -% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the SB-TV model (CPU) \n'); -iter_sb = 150; % number of SB iterations -epsil_tol = 0.0; % tolerance -tic; [u_sb,infovec] = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value -rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); -figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); -% iter_sb = 150; % number of SB iterations -% epsil_tol = 0.0; % tolerance -% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; -% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:))); -% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); -% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)'); -%% -fprintf('Denoise a volume using the ROF-LLT model (CPU) \n'); -lambda_ROF = lambda_reg; % ROF regularisation parameter -lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -iter_LLT = 300; % iterations -tau_rof_llt = 0.0025; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; [u_rof_llt, infovec] = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; -rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); -fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n'); -% lambda_ROF = lambda_reg; % ROF regularisation parameter -% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter -% iter_LLT = 300; % iterations -% tau_rof_llt = 0.0025; % time-marching constant -% epsil_tol = 0.0; % tolerance -% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; -% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); -% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); -% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); -%% -fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.025; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; [u_diff, infovec] = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; -rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); -fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); -%% -% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 0.025; % regularisation for the diffusivity -% sigmaPar = 0.015; % edge-preserving parameter -% tau_param = 0.025; % time-marching constant -% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; -% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); -% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); -% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 300; % number of diffusion iterations -lambda_regDiff = 3.5; % regularisation for the diffusivity -sigmaPar = 0.02; % edge-preserving parameter -tau_param = 0.0015; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; -rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); -fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); -%% -% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -% iter_diff = 300; % number of diffusion iterations -% lambda_regDiff = 3.5; % regularisation for the diffusivity -% sigmaPar = 0.02; % edge-preserving parameter -% tau_param = 0.0015; % time-marching constant -% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; -% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); -% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); -% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.03; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -L2 = 12.0; % convergence parameter -iter_TGV = 500; % number of Primal-Dual iterations for TGV -epsil_tol = 0.0; % tolerance -tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; -rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); -%% -% fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.03; % regularisation parameter -% alpha1 = 1.0; % parameter to control the first-order term -% alpha0 = 2.0; % parameter to control the second-order term -% iter_TGV = 500; % number of Primal-Dual iterations for TGV -% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; -% rmseTGV = RMSE(Ideal3D(:),u_tgv_gpu(:)); -% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -% figure; imshow(u_tgv_gpu(:,:,3), [0 1]); title('TGV denoised volume (GPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % -fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 0.0; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); -%% -fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); - -% create another volume (reference) with slightly less amount of noise -vol3D_ref = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); -end -vol3D_ref(vol3D_ref < 0) = 0; -% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -iter_fgp = 300; % number of FGP iterations -epsil_tol = 0.0; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); -%% |