1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
|
/*
* This work is part of the Core Imaging Library developed by
* Visual Analytics and Imaging System Group of the Science Technology
* Facilities Council, STFC
*
* Copyright 2017 Daniil Kazantsev
* Copyright 2017 Srikanth Nagella, Edoardo Pasca
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <malloc.h>
#include "TNV_core.h"
#define BLOCK 32
#define min(a,b) (((a)<(b))?(a):(b))
inline void coefF(float *t, float M1, float M2, float M3, float sigma, int p, int q, int r) {
int ii, num;
float divsigma = 1.0f / sigma;
float sum, shrinkfactor;
float T,D,det,eig1,eig2,sig1,sig2,V1, V2, V3, V4, v0,v1,v2, mu1,mu2,sig1_upd,sig2_upd;
float proj[2] = {0};
// Compute eigenvalues of M
T = M1 + M3;
D = M1 * M3 - M2 * M2;
det = sqrtf(MAX((T * T / 4.0f) - D, 0.0f));
eig1 = MAX((T / 2.0f) + det, 0.0f);
eig2 = MAX((T / 2.0f) - det, 0.0f);
sig1 = sqrtf(eig1);
sig2 = sqrtf(eig2);
// Compute normalized eigenvectors
V1 = V2 = V3 = V4 = 0.0f;
if(M2 != 0.0f)
{
v0 = M2;
v1 = eig1 - M3;
v2 = eig2 - M3;
mu1 = sqrtf(v0 * v0 + v1 * v1);
mu2 = sqrtf(v0 * v0 + v2 * v2);
if(mu1 > fTiny)
{
V1 = v1 / mu1;
V3 = v0 / mu1;
}
if(mu2 > fTiny)
{
V2 = v2 / mu2;
V4 = v0 / mu2;
}
} else
{
if(M1 > M3)
{
V1 = V4 = 1.0f;
V2 = V3 = 0.0f;
} else
{
V1 = V4 = 0.0f;
V2 = V3 = 1.0f;
}
}
// Compute prox_p of the diagonal entries
sig1_upd = sig2_upd = 0.0f;
if(p == 1)
{
sig1_upd = MAX(sig1 - divsigma, 0.0f);
sig2_upd = MAX(sig2 - divsigma, 0.0f);
} else if(p == INFNORM)
{
proj[0] = sigma * fabs(sig1);
proj[1] = sigma * fabs(sig2);
/*l1 projection part */
sum = fLarge;
num = 0l;
shrinkfactor = 0.0f;
while(sum > 1.0f)
{
sum = 0.0f;
num = 0;
for(ii = 0; ii < 2; ii++)
{
proj[ii] = MAX(proj[ii] - shrinkfactor, 0.0f);
sum += fabs(proj[ii]);
if(proj[ii]!= 0.0f)
num++;
}
if(num > 0)
shrinkfactor = (sum - 1.0f) / num;
else
break;
}
/*l1 proj ends*/
sig1_upd = sig1 - divsigma * proj[0];
sig2_upd = sig2 - divsigma * proj[1];
}
// Compute the diagonal entries of $\widehat{\Sigma}\Sigma^{\dagger}_0$
if(sig1 > fTiny)
sig1_upd /= sig1;
if(sig2 > fTiny)
sig2_upd /= sig2;
// Compute solution
t[0] = sig1_upd * V1 * V1 + sig2_upd * V2 * V2;
t[1] = sig1_upd * V1 * V3 + sig2_upd * V2 * V4;
t[2] = sig1_upd * V3 * V3 + sig2_upd * V4 * V4;
}
#include "hw_sched.h"
typedef _Float16 floatxx; // Large arrays, allways float16 if we go mixed-precision.
//typedef _Float16 floatyy; // Small arrays which we can do both ways.
typedef float floatyy;
typedef struct {
int offY, stepY, copY;
floatxx *Input, *u, *qx, *qy, *gradx, *grady, *div;
floatyy *div0, *udiff0;
floatyy *gradxdiff, *gradydiff, *ubarx, *ubary, *udiff;
float resprimal, resdual;
float unorm, qnorm, product;
} tnv_thread_t;
typedef struct {
int threads;
tnv_thread_t *thr_ctx;
float *InputT, *uT;
int dimX, dimY, dimZ, padZ;
float lambda, sigma, tau, theta;
} tnv_context_t;
HWSched sched = NULL;
tnv_context_t tnv_ctx;
static int tnv_free(HWThread thr, void *hwctx, int device_id, void *data) {
int i,j,k;
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
free(ctx->Input);
free(ctx->u);
free(ctx->qx);
free(ctx->qy);
free(ctx->gradx);
free(ctx->grady);
free(ctx->div);
free(ctx->div0);
free(ctx->udiff0);
free(ctx->gradxdiff);
free(ctx->gradydiff);
free(ctx->ubarx);
free(ctx->ubary);
free(ctx->udiff);
return 0;
}
static int tnv_init(HWThread thr, void *hwctx, int device_id, void *data) {
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
int dimX = tnv_ctx->dimX;
int dimY = tnv_ctx->dimY;
int dimZ = tnv_ctx->dimZ;
int padZ = tnv_ctx->padZ;
int offY = ctx->offY;
int stepY = ctx->stepY;
// printf("%i %p - %i %i %i x %i %i\n", device_id, ctx, dimX, dimY, dimZ, offY, stepY);
long DimTotal = (long)(dimX*stepY*padZ);
long Dim1Total = (long)(dimX*(stepY+1)*padZ);
long DimRow = (long)(dimX * padZ);
long DimCell = (long)(padZ);
// Auxiliar vectors
ctx->Input = memalign(64, Dim1Total * sizeof(floatxx));
ctx->u = memalign(64, Dim1Total * sizeof(floatxx));
ctx->qx = memalign(64, DimTotal * sizeof(floatxx));
ctx->qy = memalign(64, DimTotal * sizeof(floatxx));
ctx->gradx = memalign(64, DimTotal * sizeof(floatxx));
ctx->grady = memalign(64, DimTotal * sizeof(floatxx));
ctx->div = memalign(64, Dim1Total * sizeof(floatxx));
ctx->div0 = memalign(64, DimRow * sizeof(floatyy));
ctx->udiff0 = memalign(64, DimRow * sizeof(floatyy));
ctx->gradxdiff = memalign(64, DimCell * sizeof(floatyy));
ctx->gradydiff = memalign(64, DimCell * sizeof(floatyy));
ctx->ubarx = memalign(64, DimCell * sizeof(floatyy));
ctx->ubary = memalign(64, DimCell * sizeof(floatyy));
ctx->udiff = memalign(64, DimCell * sizeof(floatyy));
if ((!ctx->Input)||(!ctx->u)||(!ctx->qx)||(!ctx->qy)||(!ctx->gradx)||(!ctx->grady)||(!ctx->div)||(!ctx->div0)||(!ctx->udiff)||(!ctx->udiff0)) {
fprintf(stderr, "Error allocating memory\n");
exit(-1);
}
return 0;
}
static int tnv_start(HWThread thr, void *hwctx, int device_id, void *data) {
int i,j,k;
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
int dimX = tnv_ctx->dimX;
int dimY = tnv_ctx->dimY;
int dimZ = tnv_ctx->dimZ;
int padZ = tnv_ctx->padZ;
int offY = ctx->offY;
int stepY = ctx->stepY;
int copY = ctx->copY;
// printf("%i %p - %i %i %i (%i) x %i %i\n", device_id, ctx, dimX, dimY, dimZ, padZ, offY, stepY);
long DimTotal = (long)(dimX*stepY*padZ);
long Dim1Total = (long)(dimX*copY*padZ);
memset(ctx->u, 0, Dim1Total * sizeof(floatxx));
memset(ctx->qx, 0, DimTotal * sizeof(floatxx));
memset(ctx->qy, 0, DimTotal * sizeof(floatxx));
memset(ctx->gradx, 0, DimTotal * sizeof(floatxx));
memset(ctx->grady, 0, DimTotal * sizeof(floatxx));
memset(ctx->div, 0, Dim1Total * sizeof(floatxx));
for(k=0; k<dimZ; k++) {
for(j=0; j<copY; j++) {
for(i=0; i<dimX; i++) {
ctx->Input[j * dimX * padZ + i * padZ + k] = tnv_ctx->InputT[k * dimX * dimY + (j + offY) * dimX + i];
ctx->u[j * dimX * padZ + i * padZ + k] = tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i];
}
}
}
return 0;
}
static int tnv_finish(HWThread thr, void *hwctx, int device_id, void *data) {
int i,j,k;
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
int dimX = tnv_ctx->dimX;
int dimY = tnv_ctx->dimY;
int dimZ = tnv_ctx->dimZ;
int padZ = tnv_ctx->padZ;
int offY = ctx->offY;
int stepY = ctx->stepY;
int copY = ctx->copY;
for(k=0; k<dimZ; k++) {
for(j=0; j<stepY; j++) {
for(i=0; i<dimX; i++) {
tnv_ctx->uT[k * dimX * dimY + (j + offY) * dimX + i] = ctx->u[j * dimX * padZ + i * padZ + k];
}
}
}
return 0;
}
static int tnv_restore(HWThread thr, void *hwctx, int device_id, void *data) {
int i,j,k;
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
int dimX = tnv_ctx->dimX;
int dimY = tnv_ctx->dimY;
int dimZ = tnv_ctx->dimZ;
int stepY = ctx->stepY;
int copY = ctx->copY;
int padZ = tnv_ctx->padZ;
long DimTotal = (long)(dimX*stepY*padZ);
long Dim1Total = (long)(dimX*copY*padZ);
memset(ctx->u, 0, Dim1Total * sizeof(floatxx));
memset(ctx->qx, 0, DimTotal * sizeof(floatxx));
memset(ctx->qy, 0, DimTotal * sizeof(floatxx));
memset(ctx->gradx, 0, DimTotal * sizeof(floatxx));
memset(ctx->grady, 0, DimTotal * sizeof(floatxx));
memset(ctx->div, 0, Dim1Total * sizeof(floatxx));
return 0;
}
static int tnv_step(HWThread thr, void *hwctx, int device_id, void *data) {
long i, j, k, l, m;
tnv_context_t *tnv_ctx = (tnv_context_t*)data;
tnv_thread_t *ctx = tnv_ctx->thr_ctx + device_id;
int dimX = tnv_ctx->dimX;
int dimY = tnv_ctx->dimY;
int dimZ = tnv_ctx->dimZ;
int padZ = tnv_ctx->padZ;
int offY = ctx->offY;
int stepY = ctx->stepY;
int copY = ctx->copY;
floatxx *Input = ctx->Input;
floatxx *u = ctx->u;
floatxx *qx = ctx->qx;
floatxx *qy = ctx->qy;
floatxx *gradx = ctx->gradx;
floatxx *grady = ctx->grady;
floatxx *div = ctx->div;
long p = 1l;
long q = 1l;
long r = 0l;
float lambda = tnv_ctx->lambda;
float sigma = tnv_ctx->sigma;
float tau = tnv_ctx->tau;
float theta = tnv_ctx->theta;
float taulambda = tau * lambda;
float divtau = 1.0f / tau;
float divsigma = 1.0f / sigma;
float theta1 = 1.0f + theta;
float constant = 1.0f + taulambda;
float resprimal = 0.0f;
float resdual1 = 0.0f;
float resdual2 = 0.0f;
float product = 0.0f;
float unorm = 0.0f;
float qnorm = 0.0f;
floatyy qxdiff;
floatyy qydiff;
floatyy divdiff;
floatyy *gradxdiff = ctx->gradxdiff;
floatyy *gradydiff = ctx->gradydiff;
floatyy *ubarx = ctx->ubarx;
floatyy *ubary = ctx->ubary;
floatyy *udiff = ctx->udiff;
floatyy *udiff0 = ctx->udiff0;
floatyy *div0 = ctx->div0;
j = 0; {
# define TNV_LOOP_FIRST_J
i = 0; {
# define TNV_LOOP_FIRST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_FIRST_I
}
for(i = 1; i < (dimX - 1); i++) {
# include "TNV_core_loop.h"
}
i = dimX - 1; {
# define TNV_LOOP_LAST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_LAST_I
}
# undef TNV_LOOP_FIRST_J
}
for(int j = 1; j < (copY - 1); j++) {
i = 0; {
# define TNV_LOOP_FIRST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_FIRST_I
}
}
for(int j1 = 1; j1 < (copY - 1); j1 += BLOCK) {
for(int i1 = 1; i1 < (dimX - 1); i1 += BLOCK) {
for(int j2 = 0; j2 < BLOCK; j2 ++) {
j = j1 + j2;
for(int i2 = 0; i2 < BLOCK; i2++) {
i = i1 + i2;
if (i == (dimX - 1)) break;
if (j == (copY - 1)) { j2 = BLOCK; break; }
# include "TNV_core_loop.h"
}
}
} // i
}
for(int j = 1; j < (copY - 1); j++) {
i = dimX - 1; {
# define TNV_LOOP_LAST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_LAST_I
}
}
for (j = copY - 1; j < stepY; j++) {
# define TNV_LOOP_LAST_J
i = 0; {
# define TNV_LOOP_FIRST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_FIRST_I
}
for(i = 1; i < (dimX - 1); i++) {
# include "TNV_core_loop.h"
}
i = dimX - 1; {
# define TNV_LOOP_LAST_I
# include "TNV_core_loop.h"
# undef TNV_LOOP_LAST_I
}
# undef TNV_LOOP_LAST_J
}
ctx->resprimal = resprimal;
ctx->resdual = resdual1 + resdual2;
ctx->product = product;
ctx->unorm = unorm;
ctx->qnorm = qnorm;
return 0;
}
static void TNV_CPU_init(float *InputT, float *uT, int dimX, int dimY, int dimZ) {
int i, off, size, err;
if (sched) return;
tnv_ctx.dimX = dimX;
tnv_ctx.dimY = dimY;
tnv_ctx.dimZ = dimZ;
// Padding seems actually slower
// tnv_ctx.padZ = dimZ;
// tnv_ctx.padZ = 4 * ((dimZ / 4) + ((dimZ % 4)?1:0));
tnv_ctx.padZ = 16 * ((dimZ / 16) + ((dimZ % 16)?1:0));
hw_sched_init();
int threads = hw_sched_get_cpu_count();
if (threads > dimY) threads = dimY/2;
int step = dimY / threads;
int extra = dimY % threads;
tnv_ctx.threads = threads;
tnv_ctx.thr_ctx = (tnv_thread_t*)calloc(threads, sizeof(tnv_thread_t));
for (i = 0, off = 0; i < threads; i++, off += size) {
tnv_thread_t *ctx = tnv_ctx.thr_ctx + i;
size = step + ((i < extra)?1:0);
ctx->offY = off;
ctx->stepY = size;
if (i == (threads-1)) ctx->copY = ctx->stepY;
else ctx->copY = ctx->stepY + 1;
}
sched = hw_sched_create(threads);
if (!sched) { fprintf(stderr, "Error creating threads\n"); exit(-1); }
err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_init);
if (!err) err = hw_sched_wait_task(sched);
if (err) { fprintf(stderr, "Error %i scheduling init threads", err); exit(-1); }
}
/*
* C-OMP implementation of Total Nuclear Variation regularisation model (2D + channels) [1]
* The code is modified from the implementation by Joan Duran <joan.duran@uib.es> see
* "denoisingPDHG_ipol.cpp" in Joans Collaborative Total Variation package
*
* Input Parameters:
* 1. Noisy volume of 2D + channel dimension, i.e. 3D volume
* 2. lambda - regularisation parameter
* 3. Number of iterations [OPTIONAL parameter]
* 4. eplsilon - tolerance constant [OPTIONAL parameter]
* 5. print information: 0 (off) or 1 (on) [OPTIONAL parameter]
*
* Output:
* 1. Filtered/regularized image (u)
*
* [1]. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.
*/
float TNV_CPU_main(float *InputT, float *uT, float lambda, int maxIter, float tol, int dimX, int dimY, int dimZ)
{
int err;
int iter;
int i,j,k,l,m;
lambda = 1.0f/(2.0f*lambda);
tnv_ctx.lambda = lambda;
// PDHG algorithm parameters
float tau = 0.5f;
float sigma = 0.5f;
float theta = 1.0f;
// Backtracking parameters
float s = 1.0f;
float gamma = 0.75f;
float beta = 0.95f;
float alpha0 = 0.2f;
float alpha = alpha0;
float delta = 1.5f;
float eta = 0.95f;
TNV_CPU_init(InputT, uT, dimX, dimY, dimZ);
tnv_ctx.InputT = InputT;
tnv_ctx.uT = uT;
int padZ = tnv_ctx.padZ;
err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_start);
if (!err) err = hw_sched_wait_task(sched);
if (err) { fprintf(stderr, "Error %i scheduling start threads", err); exit(-1); }
// Apply Primal-Dual Hybrid Gradient scheme
float residual = fLarge;
int started = 0;
for(iter = 0; iter < maxIter; iter++) {
float resprimal = 0.0f;
float resdual = 0.0f;
float product = 0.0f;
float unorm = 0.0f;
float qnorm = 0.0f;
float divtau = 1.0f / tau;
tnv_ctx.sigma = sigma;
tnv_ctx.tau = tau;
tnv_ctx.theta = theta;
err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_step);
if (!err) err = hw_sched_wait_task(sched);
if (err) { fprintf(stderr, "Error %i scheduling tnv threads", err); exit(-1); }
// border regions
for (j = 1; j < tnv_ctx.threads; j++) {
tnv_thread_t *ctx0 = tnv_ctx.thr_ctx + (j - 1);
tnv_thread_t *ctx = tnv_ctx.thr_ctx + j;
m = (ctx0->stepY - 1) * dimX * padZ;
for(i = 0; i < dimX; i++) {
for(k = 0; k < dimZ; k++) {
int l = i * padZ + k;
floatyy divdiff = ctx->div0[l] - ctx->div[l];
floatyy udiff = ctx->udiff0[l];
ctx->div[l] -= ctx0->qy[l + m];
ctx0->div[m + l + dimX*padZ] = ctx->div[l];
ctx0->u[m + l + dimX*padZ] = ctx->u[l];
divdiff += ctx0->qy[l + m];
resprimal += fabs(divtau * udiff + divdiff);
}
}
}
{
tnv_thread_t *ctx = tnv_ctx.thr_ctx + 0;
for(i = 0; i < dimX; i++) {
for(k = 0; k < dimZ; k++) {
int l = i * padZ + k;
floatyy divdiff = ctx->div0[l] - ctx->div[l];
floatyy udiff = ctx->udiff0[l];
resprimal += fabs(divtau * udiff + divdiff);
}
}
}
for (j = 0; j < tnv_ctx.threads; j++) {
tnv_thread_t *ctx = tnv_ctx.thr_ctx + j;
resprimal += ctx->resprimal;
resdual += ctx->resdual;
product += ctx->product;
unorm += ctx->unorm;
qnorm += ctx->qnorm;
}
residual = (resprimal + resdual) / ((float) (dimX*dimY*dimZ));
float b = (2.0f * tau * sigma * product) / (gamma * sigma * unorm + gamma * tau * qnorm);
float dual_dot_delta = resdual * s * delta;
float dual_div_delta = (resdual * s) / delta;
// printf("resprimal: %f, resdual: %f, b: %f (product: %f, unorm: %f, qnorm: %f)\n", resprimal, resdual, b, product, unorm, qnorm);
if(b > 1) {
// Decrease step-sizes to fit balancing principle
tau = (beta * tau) / b;
sigma = (beta * sigma) / b;
alpha = alpha0;
if (started) {
fprintf(stderr, "\n\n\nWARNING: Back-tracking is required in the middle of iterative optimization! We CAN'T do it in the fast version. The standard TNV recommended\n\n\n");
} else {
err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_restore);
if (!err) err = hw_sched_wait_task(sched);
if (err) { fprintf(stderr, "Error %i scheduling restore threads", err); exit(-1); }
}
} else {
started = 1;
if(resprimal > dual_dot_delta) {
// Increase primal step-size and decrease dual step-size
tau = tau / (1.0f - alpha);
sigma = sigma * (1.0f - alpha);
alpha = alpha * eta;
} else if(resprimal < dual_div_delta) {
// Decrease primal step-size and increase dual step-size
tau = tau * (1.0f - alpha);
sigma = sigma / (1.0f - alpha);
alpha = alpha * eta;
}
}
if (residual < tol) break;
}
err = hw_sched_schedule_thread_task(sched, (void*)&tnv_ctx, tnv_finish);
if (!err) err = hw_sched_wait_task(sched);
if (err) { fprintf(stderr, "Error %i scheduling finish threads", err); exit(-1); }
printf("Iterations stopped at %i with the residual %f \n", iter, residual);
// printf("Return: %f\n", *uT);
return *uT;
}
|