summaryrefslogtreecommitdiffstats
path: root/samples/python/s005_3d_geometry.py
blob: cd48b1e1f78c8a5be91b41ea6e3eafebffc0d489 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -----------------------------------------------------------------------
# Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp
#            2013-2016, CWI, Amsterdam
#
# Contact: astra@uantwerpen.be
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------

try:
    from six.moves import range
except ImportError:
    # six 1.3.0
    from six.moves import xrange as range
import astra
import numpy as np

vol_geom = astra.create_vol_geom(64, 64, 64)


# There are two main 3d projection geometry types: cone beam and parallel beam.
# Each has a regular variant, and a 'vec' variant.
# The 'vec' variants are completely free in the placement of source/detector,
# while the regular variants assume circular trajectories around the z-axis.


# -------------
# Parallel beam
# -------------


# Circular

# Parameters: width of detector column, height of detector row, #rows, #columns
angles = np.linspace(0, 2*np.pi, 48, False)
proj_geom = astra.create_proj_geom('parallel3d', 1.0, 1.0, 32, 64, angles)


# Free

# We generate the same geometry as the circular one above. 
vectors = np.zeros((len(angles), 12))
for i in range(len(angles)):
  # ray direction
  vectors[i,0] = np.sin(angles[i])
  vectors[i,1] = -np.cos(angles[i])
  vectors[i,2] = 0

  # center of detector
  vectors[i,3:6] = 0

  # vector from detector pixel (0,0) to (0,1)
  vectors[i,6] = np.cos(angles[i])
  vectors[i,7] = np.sin(angles[i])
  vectors[i,8] = 0;

  # vector from detector pixel (0,0) to (1,0)
  vectors[i,9] = 0
  vectors[i,10] = 0
  vectors[i,11] = 1

# Parameters: #rows, #columns, vectors
proj_geom = astra.create_proj_geom('parallel3d_vec', 32, 64, vectors)

# ----------
# Cone beam
# ----------


# Circular

# Parameters: width of detector column, height of detector row, #rows, #columns,
#             angles, distance source-origin, distance origin-detector
angles = np.linspace(0, 2*np.pi, 48, False)
proj_geom = astra.create_proj_geom('cone', 1.0, 1.0, 32, 64, angles, 1000, 0)

# Free

vectors = np.zeros((len(angles), 12))
for i in range(len(angles)):
	# source
	vectors[i,0] = np.sin(angles[i]) * 1000
	vectors[i,1] = -np.cos(angles[i]) * 1000
	vectors[i,2] = 0

	# center of detector
	vectors[i,3:6] = 0

	# vector from detector pixel (0,0) to (0,1)
	vectors[i,6] = np.cos(angles[i])
	vectors[i,7] = np.sin(angles[i])
	vectors[i,8] = 0

	# vector from detector pixel (0,0) to (1,0)
	vectors[i,9] = 0
	vectors[i,10] = 0
	vectors[i,11] = 1		

# Parameters: #rows, #columns, vectors
proj_geom = astra.create_proj_geom('cone_vec', 32, 64, vectors)